[notes]
2
 - who knows what Structure from Motion is?
 - who is working (or has been working) on research in this area?

 Goal of Image-based 3D reconstruction is to obtain 3D structure of scenne from Images.

 - Point cloud
 - or, Mesh

 In short: SfM is part of 3D reconstruction and means to determine 3D structure from a moving camera, i.e. multiple images to 3D model.

 Today I am going to present a tool for making work with SfM easier.
2
 - who knows what Structure from Motion is?
 - who is working (or has been working) on research in this area?

 Goal of Image-based 3D reconstruction is to obtain 3D structure of scenne from Images.

 - Point cloud
 - or, Mesh

 In short: SfM is part of 3D reconstruction and means to determine 3D structure from a moving camera, i.e. multiple images to 3D model.

 Today I am going to present a tool for making work with SfM easier.
2
 - who knows what Structure from Motion is?
 - who is working (or has been working) on research in this area?

 Goal of Image-based 3D reconstruction is to obtain 3D structure of scenne from Images.

 - Point cloud
 - or, Mesh

 In short: SfM is part of 3D reconstruction and means to determine 3D structure from a moving camera, i.e. multiple images to 3D model.

 Today I am going to present a tool for making work with SfM easier.
2
 - who knows what Structure from Motion is?
 - who is working (or has been working) on research in this area?

 Goal of Image-based 3D reconstruction is to obtain 3D structure of scenne from Images.

 - Point cloud
 - or, Mesh

 In short: SfM is part of 3D reconstruction and means to determine 3D structure from a moving camera, i.e. multiple images to 3D model.

 Today I am going to present a tool for making work with SfM easier.
2
 - who knows what Structure from Motion is?
 - who is working (or has been working) on research in this area?

 Goal of Image-based 3D reconstruction is to obtain 3D structure of scenne from Images.

 - Point cloud
 - or, Mesh

 In short: SfM is part of 3D reconstruction and means to determine 3D structure from a moving camera, i.e. multiple images to 3D model.

 Today I am going to present a tool for making work with SfM easier.
3
 1. which Problem did I solve

 2. Brief explanation of 3D reconstr. process, analised before impl. the framework

 3. Framework design and implementation

 4. Show how to create SfM processing chains with it

4
 TODO timingis
5
 As said, we have images, want to obtain 3D structure of scene.

 not as simple as with laser scanners, but a great amount of different algorihtms.

 If you want to use SfM, for a specific use case,
 - either adjust
 - or replace some parts with other to fit specific problem.
5
 As said, we have images, want to obtain 3D structure of scene.

 not as simple as with laser scanners, but a great amount of different algorihtms.

 If you want to use SfM, for a specific use case,
 - either adjust
 - or replace some parts with other to fit specific problem.
5
 As said, we have images, want to obtain 3D structure of scene.

 not as simple as with laser scanners, but a great amount of different algorihtms.

 If you want to use SfM, for a specific use case,
 - either adjust
 - or replace some parts with other to fit specific problem.
5
 As said, we have images, want to obtain 3D structure of scene.

 not as simple as with laser scanners, but a great amount of different algorihtms.

 If you want to use SfM, for a specific use case,
 - either adjust
 - or replace some parts with other to fit specific problem.
5
 As said, we have images, want to obtain 3D structure of scene.

 not as simple as with laser scanners, but a great amount of different algorihtms.

 If you want to use SfM, for a specific use case,
 - either adjust
 - or replace some parts with other to fit specific problem.
5
 As said, we have images, want to obtain 3D structure of scene.

 not as simple as with laser scanners, but a great amount of different algorihtms.

 If you want to use SfM, for a specific use case,
 - either adjust
 - or replace some parts with other to fit specific problem.
5
 As said, we have images, want to obtain 3D structure of scene.

 not as simple as with laser scanners, but a great amount of different algorihtms.

 If you want to use SfM, for a specific use case,
 - either adjust
 - or replace some parts with other to fit specific problem.
5
 As said, we have images, want to obtain 3D structure of scene.

 not as simple as with laser scanners, but a great amount of different algorihtms.

 If you want to use SfM, for a specific use case,
 - either adjust
 - or replace some parts with other to fit specific problem.
6
 Many tool for Sfm Exist as open or closed source software, but:

 - come as single program for whole chain
 - hard to adjust/restructure and its hard to work with other peoples code

 bad = not the fault of the author, they did a great job in implementing their specific solution well, but its bad when you want to improve something or adjust a chain to a different problem space.

 Framework:

 - flexible: reuse existing code and allow combination in different contexts easily

 - not limited to small problems, but be efficient to allow large scale reconstr. problems.

 - viz options: for debugging and eval of intermed. and final results.

6
 Many tool for Sfm Exist as open or closed source software, but:

 - come as single program for whole chain
 - hard to adjust/restructure and its hard to work with other peoples code

 bad = not the fault of the author, they did a great job in implementing their specific solution well, but its bad when you want to improve something or adjust a chain to a different problem space.

 Framework:

 - flexible: reuse existing code and allow combination in different contexts easily

 - not limited to small problems, but be efficient to allow large scale reconstr. problems.

 - viz options: for debugging and eval of intermed. and final results.

6
 Many tool for Sfm Exist as open or closed source software, but:

 - come as single program for whole chain
 - hard to adjust/restructure and its hard to work with other peoples code

 bad = not the fault of the author, they did a great job in implementing their specific solution well, but its bad when you want to improve something or adjust a chain to a different problem space.

 Framework:

 - flexible: reuse existing code and allow combination in different contexts easily

 - not limited to small problems, but be efficient to allow large scale reconstr. problems.

 - viz options: for debugging and eval of intermed. and final results.

6
 Many tool for Sfm Exist as open or closed source software, but:

 - come as single program for whole chain
 - hard to adjust/restructure and its hard to work with other peoples code

 bad = not the fault of the author, they did a great job in implementing their specific solution well, but its bad when you want to improve something or adjust a chain to a different problem space.

 Framework:

 - flexible: reuse existing code and allow combination in different contexts easily

 - not limited to small problems, but be efficient to allow large scale reconstr. problems.

 - viz options: for debugging and eval of intermed. and final results.

6
 Many tool for Sfm Exist as open or closed source software, but:

 - come as single program for whole chain
 - hard to adjust/restructure and its hard to work with other peoples code

 bad = not the fault of the author, they did a great job in implementing their specific solution well, but its bad when you want to improve something or adjust a chain to a different problem space.

 Framework:

 - flexible: reuse existing code and allow combination in different contexts easily

 - not limited to small problems, but be efficient to allow large scale reconstr. problems.

 - viz options: for debugging and eval of intermed. and final results.

6
 Many tool for Sfm Exist as open or closed source software, but:

 - come as single program for whole chain
 - hard to adjust/restructure and its hard to work with other peoples code

 bad = not the fault of the author, they did a great job in implementing their specific solution well, but its bad when you want to improve something or adjust a chain to a different problem space.

 Framework:

 - flexible: reuse existing code and allow combination in different contexts easily

 - not limited to small problems, but be efficient to allow large scale reconstr. problems.

 - viz options: for debugging and eval of intermed. and final results.

6
 Many tool for Sfm Exist as open or closed source software, but:

 - come as single program for whole chain
 - hard to adjust/restructure and its hard to work with other peoples code

 bad = not the fault of the author, they did a great job in implementing their specific solution well, but its bad when you want to improve something or adjust a chain to a different problem space.

 Framework:

 - flexible: reuse existing code and allow combination in different contexts easily

 - not limited to small problems, but be efficient to allow large scale reconstr. problems.

 - viz options: for debugging and eval of intermed. and final results.

6
 Many tool for Sfm Exist as open or closed source software, but:

 - come as single program for whole chain
 - hard to adjust/restructure and its hard to work with other peoples code

 bad = not the fault of the author, they did a great job in implementing their specific solution well, but its bad when you want to improve something or adjust a chain to a different problem space.

 Framework:

 - flexible: reuse existing code and allow combination in different contexts easily

 - not limited to small problems, but be efficient to allow large scale reconstr. problems.

 - viz options: for debugging and eval of intermed. and final results.

6
 Many tool for Sfm Exist as open or closed source software, but:

 - come as single program for whole chain
 - hard to adjust/restructure and its hard to work with other peoples code

 bad = not the fault of the author, they did a great job in implementing their specific solution well, but its bad when you want to improve something or adjust a chain to a different problem space.

 Framework:

 - flexible: reuse existing code and allow combination in different contexts easily

 - not limited to small problems, but be efficient to allow large scale reconstr. problems.

 - viz options: for debugging and eval of intermed. and final results.

6
 Many tool for Sfm Exist as open or closed source software, but:

 - come as single program for whole chain
 - hard to adjust/restructure and its hard to work with other peoples code

 bad = not the fault of the author, they did a great job in implementing their specific solution well, but its bad when you want to improve something or adjust a chain to a different problem space.

 Framework:

 - flexible: reuse existing code and allow combination in different contexts easily

 - not limited to small problems, but be efficient to allow large scale reconstr. problems.

 - viz options: for debugging and eval of intermed. and final results.

7
 TODO timingis
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
8
 1. prep: normalize, resize, metadata

 2. keypoint: find key points in images and compare to find images that see same part of the scene

 3. matching: goaL: image graph, images = nodes, images that have matching point pairs are connected.

 4. epipolar geometry: for each pair we can estimate the relative geometry between camera positions = eplipolar geometry.

 eg defines the relation between a point in 3D, its projection to image planes and the camera positions.

 given a set of points, estimate fundamental matrix

 this step is named geometry estimation.

 5. triangulation of 3D points, one image + projection = line, 2nd image allows us to estimate position

 That was SfM
9
 MVS = Multi View Stereo

 ...

 So far for the process. You see a pattern here, right?

 Processing step -> data, ...

 Framework is based on this.
9
 MVS = Multi View Stereo

 ...

 So far for the process. You see a pattern here, right?

 Processing step -> data, ...

 Framework is based on this.
9
 MVS = Multi View Stereo

 ...

 So far for the process. You see a pattern here, right?

 Processing step -> data, ...

 Framework is based on this.
9
 MVS = Multi View Stereo

 ...

 So far for the process. You see a pattern here, right?

 Processing step -> data, ...

 Framework is based on this.
9
 MVS = Multi View Stereo

 ...

 So far for the process. You see a pattern here, right?

 Processing step -> data, ...

 Framework is based on this.
9
 MVS = Multi View Stereo

 ...

 So far for the process. You see a pattern here, right?

 Processing step -> data, ...

 Framework is based on this.
9
 MVS = Multi View Stereo

 ...

 So far for the process. You see a pattern here, right?

 Processing step -> data, ...

 Framework is based on this.
9
 MVS = Multi View Stereo

 ...

 So far for the process. You see a pattern here, right?

 Processing step -> data, ...

 Framework is based on this.
10
 TODO timingis
11
 - all prcessing step algos are impl. as modules

 - data types provided by framwork with common interface

 1. code reuse in different context, clean interface for all modules

 2. no other i/o deps than input, output, params, -> self-contained, parallelizable

 3. data types by framework allow control over data flow

 4. we can now form a processing chain as dep graph
11
 - all prcessing step algos are impl. as modules

 - data types provided by framwork with common interface

 1. code reuse in different context, clean interface for all modules

 2. no other i/o deps than input, output, params, -> self-contained, parallelizable

 3. data types by framework allow control over data flow

 4. we can now form a processing chain as dep graph
11
 - all prcessing step algos are impl. as modules

 - data types provided by framwork with common interface

 1. code reuse in different context, clean interface for all modules

 2. no other i/o deps than input, output, params, -> self-contained, parallelizable

 3. data types by framework allow control over data flow

 4. we can now form a processing chain as dep graph
11
 - all prcessing step algos are impl. as modules

 - data types provided by framwork with common interface

 1. code reuse in different context, clean interface for all modules

 2. no other i/o deps than input, output, params, -> self-contained, parallelizable

 3. data types by framework allow control over data flow

 4. we can now form a processing chain as dep graph
11
 - all prcessing step algos are impl. as modules

 - data types provided by framwork with common interface

 1. code reuse in different context, clean interface for all modules

 2. no other i/o deps than input, output, params, -> self-contained, parallelizable

 3. data types by framework allow control over data flow

 4. we can now form a processing chain as dep graph
11
 - all prcessing step algos are impl. as modules

 - data types provided by framwork with common interface

 1. code reuse in different context, clean interface for all modules

 2. no other i/o deps than input, output, params, -> self-contained, parallelizable

 3. data types by framework allow control over data flow

 4. we can now form a processing chain as dep graph
11
 - all prcessing step algos are impl. as modules

 - data types provided by framwork with common interface

 1. code reuse in different context, clean interface for all modules

 2. no other i/o deps than input, output, params, -> self-contained, parallelizable

 3. data types by framework allow control over data flow

 4. we can now form a processing chain as dep graph
11
 - all prcessing step algos are impl. as modules

 - data types provided by framwork with common interface

 1. code reuse in different context, clean interface for all modules

 2. no other i/o deps than input, output, params, -> self-contained, parallelizable

 3. data types by framework allow control over data flow

 4. we can now form a processing chain as dep graph
11
 - all prcessing step algos are impl. as modules

 - data types provided by framwork with common interface

 1. code reuse in different context, clean interface for all modules

 2. no other i/o deps than input, output, params, -> self-contained, parallelizable

 3. data types by framework allow control over data flow

 4. we can now form a processing chain as dep graph
12
 input of one module is read from outputs of the other.
12
 input of one module is read from outputs of the other.
12
 input of one module is read from outputs of the other.
13

 impl:

 C/C++ Code
 or external, Matlab, Python, etc...!

13

 impl:

 C/C++ Code
 or external, Matlab, Python, etc...!

13

 impl:

 C/C++ Code
 or external, Matlab, Python, etc...!

13

 impl:

 C/C++ Code
 or external, Matlab, Python, etc...!

13

 impl:

 C/C++ Code
 or external, Matlab, Python, etc...!

13

 impl:

 C/C++ Code
 or external, Matlab, Python, etc...!

13

 impl:

 C/C++ Code
 or external, Matlab, Python, etc...!

13

 impl:

 C/C++ Code
 or external, Matlab, Python, etc...!

15
 - container: impl. methods for getting + setting content.

 - interface for viz and ser = optional

 - custom types: ImageGraph, PointCloud, ...
15
 - container: impl. methods for getting + setting content.

 - interface for viz and ser = optional

 - custom types: ImageGraph, PointCloud, ...
15
 - container: impl. methods for getting + setting content.

 - interface for viz and ser = optional

 - custom types: ImageGraph, PointCloud, ...
15
 - container: impl. methods for getting + setting content.

 - interface for viz and ser = optional

 - custom types: ImageGraph, PointCloud, ...
19
 TODO timingis
24
itemize Framework for 3D reconstruction Achived the goal of flexible implementation Provides a basic processing chain that can be extended
24
itemize Framework for 3D reconstruction Achived the goal of flexible implementation Provides a basic processing chain that can be extended

