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Chapter 1

Introduction

Image-based 3D reconstruction has become a popular research topic within recent

years and �nds application in a wide variety of �elds, such as the reconstruction of

single buildings [Wefelscheid 2011], parts of a city [Frahm 2010, Agarwal 2011] or

even whole regions of a city [Over 2010], the generation of CAD models from real

world objects [Chen 2005], as well as real-time 3D scene approximation from video

[Kau� 2007] and many more.

It has been shown that image-based 3D reconstruction can achieve the same

accuracy as 3D reconstruction using laser scanners (LIDAR) [Strecha 2008]. Using

images also has the advantage that texture information can be captured, which is

not directly available when using laser scanners.

However, in contrast to reconstruction with laser scanners, the path from images

to a reconstructed 3D model is long and complex and requires a great amount of

di�erent algorithms to be applied in a processing chain to work together. Also di�er-

ent techniques must be applied in di�erent circumstances so in most applications it

would be useful to be able to use an existing processing chain and exchange parts of

it with a di�erent method, which �ts better for a speci�c use case [Wefelscheid 2011].

When working on speci�c parts of the whole process of 3D reconstruction, it is

still necessary to create a complete processing chain to evaluate the e�ect of changes

in a speci�c part of the algorithm on the �nal 3D reconstruction result.

Existing 3D reconstruction implementations however are not designed to be �ex-

ible in the way they run, but focus on solving their concrete problem statement well.

This makes it hard to reuse existing implementations in di�erent contexts. They

either come as one binary that implements everything [Wu 2013], or use propri-

etary data formats, so that a conversion is necessary to use another tool for further

processing [Snavely 2006].

The goal of this thesis is to develop a modular framework that allows the creation

of processing chains for image-based 3D reconstruction in a �exible way, so that

parts of the chain can be adjusted or replaced easily to adopt a processing chain to

a di�erent use case.

Additionally it should further simplify the task of developing a processing chain

by providing methods for debugging the intermediate results of algorithms using

visualisation methods.

The �exibility should not come at the cost of performance, so the design of

the framework should not limit the algorithms developed with it, but allow the

application to large scale reconstruction problems.
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To achieve the goal of creating the framework, the �rst step is to understand the

basics of image-based 3D reconstruction, which are described in Chapter 2. After

that a review of existing implementations follows in Chapter 3, to extract the com-

mon processing steps and data structures of 3D reconstruction methods. Chapter 4

then contains a description of the framework's concept and implementation, which

are applied to 3D reconstruction in Chapter 5. In Chapter 6 the framework is applied

to real world use cases to demonstrate and validate its functionality. A conclusion

is given in Chapter 7.



Chapter 2

Image-based 3D Reconstruction

Contents

2.1 Structure from Motion . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 3D Geometry Estimation . . . . . . . . . . . . . . . . . . . . 7

2.2 Dense Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . 16

In this section I will introduce the process of image-based 3D reconstruction by

breaking it down into single, isolated steps and describing the theoretical background

of the applied algorithms.

Image-based 3D reconstruction is the process of obtaining 3D structure from the

real world and creating a digital model of it, based on digital images taken from

a scene [Hartley 2003]. It di�ers from reconstruction via laser scanners (LIDAR)

in the sense, that it is not only able to obtain the 3D structure, but also provides

the texture of an object, i.e. it preserves the colour information of the captured

object [Strecha 2008]. It has also been shown that image-based 3D reconstruction is

able to be performed with the same accuracy as with laser scanners [Strecha 2008].

Another bene�t is that dependent on the case, existing images can be used, which

might not have been taken with the goal of 3D reconstruction in mind, because the

methods used, do not require a calibration step [Hartley 2003]. Applications of this

have been shown by [Frahm 2010], [Agarwal 2011] and others by taking images from

photo sharing platforms on the internet to create 3D models of parts of a city.

The key part of image-based 3D reconstruction is Structure from Motion (SfM),

which means to infer 3D structure from a moving camera, i.e. images taken from

di�erent positions in 3D space [Longuet-Higgins 1981]. SfM deals with the task

of estimating the relative orientation between camera positions in 3D space from

images, without additional information. It also estimates a sparse set of 3D points

of the observed scene. After SfM further methods can be applied to generate a dense

point cloud of the scene which can afterwards be used to obtain a 3D mesh.

In the following I will describe the techniques for Structure from Motion (Sec-

tion 2.1), estimation of a dense point cloud from the known 3D geometry (Sec-

tion 2.2), and obtaining a 3D mesh from point clouds, which is known as Surface

Reconstruction (Section 2.3).
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2.1 Structure from Motion

In Structure from Motion (SfM), the path of getting from the initial input images to

the 3D structure involves a chain of di�erent steps. There is a core set of steps that

are involved in every application, but there are also di�erent methods that involve

di�erent combinations of algorithms, dependent on the use case. In this section I

will cover the theory of the basic algorithms of SfM. A detailed review of di�erent

methods applied in di�erent practical applications can be found in Section 3.1.

The initial input to the SfM processing chain is a set of n ≥ 2 images, while

the result is the estimation of the original position, from which the image has been

taken, as well as a sparse set of 3D points of the scene [Hartley 2003].

The common procedure of a SfM processing chain can be broken down into three

major steps, which are (1) feature extraction and description, (2) feature matching,

and (3) estimation of the 3D geometry.

2.1.1 Feature Extraction

SfM algorithms are able to work on an unordered set of images without prior knowl-

edge or additional information [Zhang 1998]. To �nd related images that picture

the same part of a scene, SfM involves feature extraction as the �rst step. The

extracted features can then be compared to �nd images that capture the same part

of a scene [Zhang 1995].

Features used for SfM are preferably point features called key points or interest

points, because in the later steps corresponding point pairs can be used to deter-

mine the 3D coordinates of a certain point in the world [Zhang 1998, Schreer 2005].

The images are usually taken from di�erent view points of a scene, which includes

di�erent viewing angles as well as di�erent distances. To be able to compare point

features between those images, the feature extractor must be invariant to rotation,

scale, and a�ne transformation [Gil 2010].

The extraction of point features includes two steps: (1) the detection of the

points, and (2) their description. The detection step is for �nding coordinates in

the image that have certain properties. The description step creates a descriptor

vector based on the point's pixel environment and should allow to �nd the point in

other images by comparing these vectors [Gil 2010].

A commonly used point detector and descriptor in SfM approaches is SIFT (Scale

Invariant Feature Transform) originally described by [Lowe 2004]. This descriptor is

robust against up to 30◦ rotation between the image planes [Irschara 2009], partially

invariant to change in illumination, and has been shown to perform best compared to

other descriptors, when applied in the �eld of 3D reconstruction [Mikolajczyk 2005].

While SIFT covers both, the point detection and description, it is possible to

use the descriptor part on points detected by other algorithms. This is done by

[Wefelscheid 2011], who use the Förstner Operator [Förstner 1987] for detection

and SIFT as the descriptor, to exploit the advantage of the Förstner Operator on

images taken from man made architecture which usually contains sharp edges.
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(a) An image of a tree, obtained by com-

bining the intensity of three channels (RGB

colour) into one channel (grey scale).

(b) Visualisation of the trace of the struc-

ture tensor, indicating areas with large

change in intensity (black).

(c) Visualisation of the isotropy, which

measures the uniformity of the gradient di-

rections in the neighbourhood of a pixel.

High values (black) indicate less uniformity,

i.e. candidates for an interest point.

(d) The resulting interest points' positions

painted as red circles on the original image.

Figure 2.1: Process of point detection using the Förstner Operator [Förstner 1987].

Another commonly used point detector is the Harris Corner and Edge Detector

described by [Harris 1988]. It provides a method for point detection as well as edge

detection. Edges and point features are very similar as they both are characterised

by the change of intensity in an image. An interest point is considered in image

regions, in which the gradient of image intensity is large in both, horizontal and

vertical direction.

To provide a general idea on how point detection works, I will show a short

summary of the techniques used by the Förstner Operator [Förstner 1987].

The �rst step is the computation of directional gradients, which is the change in

intensity in x and y direction. Based on the gradient values gx and gy a so called

structure tensor is de�ned:

A =
∑
W

ggT =

[ ∑
W g2x

∑
W gxgy∑

W gygx
∑

W g2y

]
(2.1)
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In Equation 2.1, W denotes a window over the pixel neighbourhood, which can be a

box window using equal weights for all pixels in the neighbourhood or be based on

a Gaussian kernel which applies di�erent weights, so pixels which are further away

count less to the gradient value than pixels which are near.

As the structure tensor provides information about the gradients in the pixel

neighbourhood two properties of the tensor can be extracted that describe whether

the pixel is a candidate for an interest point. The weight w denotes the strength

of the gradients in the neighbourhood and is calculated based on the trace and

determinant of the structure tensor w = det(A)
tr(A) . A visualisation of the trace tr(A) is

shown in Figure 2.1b. Another measurement is the isotropy q, which measures the

uniformity of the gradient directions in the neighbourhood q = 4det(A)
tr(A)2

. High values

indicate low uniformity and thus indicate points that are candidates for an interest

point, because a point means change of the gradient in two directions. The isotropy

value is visualised in Figure 2.1c.

Interest points are found by calculating the weight w, and applying a non-max-

suppression and a threshold for it. The same non-max-suppression and threshold

is applied for the isotropy. So the points that have big change in gradient (weight)

and whose gradient directions are not uniform in the neighbourhood (isotropy) are

considered interest points. The detected points are highlighted in Figure 2.1d.

For further information on the topic, the reader may refer to [Gil 2010],

which provides a good summary of point descriptors and their properties, and

[Mikolajczyk 2005] for a performance evaluation of point detectors under di�erent

image transformations.

2.1.2 Feature Matching

The next step after feature detection is feature matching, which aims to test whether

a point of a scene, that can be seen in one image, also exists in other images

[Zhang 1995]. The result of feature matching is a graph of images, where images are

connected that share some part of the scene. In the graph, images are the vertices

and edges connect images that picture the same part of the scene. For each image

pair a set of corresponding point pairs is detected [Wefelscheid 2011]. Addition-

ally to that, an algorithm may extract the points that are seen in multiple images

[Snavely 2006].

For �nding image pairs, a correspondence search is performed by comparing the

feature descriptor vectors. For this a similarity measure needs to be de�ned which

can be for example the euclidean distance in the space of the descriptor vector

[Wefelscheid 2011]. This space has 128 dimensions in case of SIFT [Lowe 2004], but

may also have other dimensionality for other point descriptors [Gil 2010]. To �nd

similar points, the image space can be searched using a nearest neighbour search

approach as described by [Snavely 2006]. An overview over di�erent approaches in

di�erent application scenarios is later given in Section 3.1.1.1.

For a complete graph, all images need to be compared with each other result-

ing in a complexity of this step of O(n2k2) with n images and k features each
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[Schönberger 2016a]. Thus when working with a large number of images, clustering

approaches and pre-�ltering need to be applied which are covered in Section 3.1.1.1.

The matches of feature points usually contain a large amount of outliers

[Schönberger 2016a] so that after the matching a �lter needs to be applied to make

sure only matches are kept that are geometrically feasible. This is usually done after

geometry estimation using statistical outlier removal methods like Random Sample

Consensus [Fischler 1981], which will be explained in Section 2.1.3.5.

While most SfM implementations are designed to work with unordered images

without additional information, the matching process can be improved by using

prior knowledge about the camera positions and thus the relations of images to each

other, when this information is available, as described by [Stathopoulou 2015].

2.1.3 3D Geometry Estimation

Given the image graph including a set of correspondent point pairs for each image

pair, the 3D geometry can be estimated. For this at least two images need to be

used. The geometry between two images can be described by the Epipolar Geometry

and is fully described by the Fundamental Matrix F, which can be estimated based

on known point correspondences [Schreer 2005, Hartley 2003]. The geometry esti-

mation between image triplets can also be computed, which results in a descriptor

that is called Trifocal Tensor T [Hartley 2003].

2.1.3.1 The Pinhole Camera Model

To be able to infer information about points in 3D space from images, a model of

the camera needs to be de�ned that was used to transform the light rays emitted

by points from the scene onto the image.

The way light travels through lenses of a camera is usually very complicated to

model, so a simpler model is desirable. For structure from motion we are using the

pinhole camera model, which proposes the assumption that all light rays go through

one single point, called the camera centre C [Hartley 2003, Schreer 2005]. Using

this model, the geometric relations between pixel coordinates and coordinates in

the 3D scene can be described by a linear transformation [Olague 2002].

Figure 2.2 illustrates the camera model by showing, how a point in the world is

pictured on the image plane of the pinhole camera. The image on the image plane

is created by mapping the light ray by a point re�ection on the camera centre and

is therefor inverted. For better understanding, the image plane is often shown in

front of the camera centre, which is equivalent because of the point re�ection.

The properties of the camera model can be described using a set of parameters

which in�uence the way a point is projected onto the image plane. We distinguish

between external and internal camera parameters [Schreer 2005].

External camera parameters are the position of the camera centre described by

the vector t =
[
X,Y, Z

]T
, and its orientation described by spatial rotation angles

Ω,Φ,Ψ in 3D space which may also be represented in terms of a rotation matrix R.
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C

I

m m
′

MW

f

Figure 2.2: Projection m of a point MW in the world onto the image plane I in

the pinhole camera model. Light rays go through the camera centre C, indicating a

point re�ection. This causes the image in distance f (focal length), in front of, and

behind the camera centre to be the same except inversion.

A point in world coordinates MW can be transformed into the camera coordinate

system, which has the origin in the camera centreC by the following transformation:

MC = RMW + t (2.2)

MC expresses the position of the point relative to the camera [Schreer 2005].

Internal camera parameters describe the inner geometry of the camera and de-

scribe how points from the world are mapped to the image plane. Dependent on the

camera, this can be modelled with di�erent parameters. The basic internal cam-

era parameters are the focal length f , which is the distance between camera centre

and the image plane, the aspect ratio of the pixels on the image plane γ = mx
my

,

and the position of the principal point (x0, y0) [Schreer 2005, Hartley 2003]. More

complex models with more parameters for linear and also non-linear distortions are

described by [Hartley 2003], but not covered here. Figure 2.3 shows the relation of

these parameters in the camera model. These internal camera parameters form the

calibration matrix K [Schreer 2005]:

K =

fmx 0 x0
0 fmy y0
0 0 1

 (2.3)

To de�ne the projection of a point in 3D space MW into its projection on the image

plane m the projection matrix P is de�ned based on Equations 2.2 and 2.3 in the

following way [Schreer 2005]:

P = K︸︷︷︸
internal

·
[
R t

]︸ ︷︷ ︸
external

(2.4)

This results in the following correlation of m and MW :

m̃ =

(
x

y

1

)
= P

X

Y

Z

1

 = PM̃W (2.5)

In the above equation, M̃W denotes the point in 3D homogeneous coordinates, and

m̃ is its projection on the image plane in 2D homogeneous coordinates.



2.1. Structure from Motion 9

I

x

y

f
(x0, y0)

C

MW
m

ZC

XC

YC

ZW

XW

YW

Figure 2.3: Visualisation of the internal and external camera parameters, as well

as the three coordinate systems: (1) World coordinate system (XW , YW , ZW ),

(2) Camera coordinate system (XC , YC , ZC), (3) Image coordinates (x, y). Internal

camera parameters are the focal length f , which is the distance between camera

centreC and the image plane I. The position of the principal point (x0, y0) describes

the position where the Z-axis of the camera coordinate system intersects with the

image plane. Additionally the projection of a point MW in the world, as point m

on the image plain is shown, where m are the pixel coordinates of MW 's projection.

2.1.3.2 Two View Geometry

Given one image, to obtain the 3D structure of the scene, the depth information for

each point in the image is missing. A single image provides the information about

the line the point is located on in 3D space. This results from the pinhole camera

model, which assumes light to go in straight lines through the camera centre C. By

using a second image, with knowledge of the pixel coordinates of the same scene

point in that image, the 3D position of the point in 3D space can be triangulated.

The idea is shown in Figure 2.4.

m

M̃1
M̃2

M̃3

C1

m′

C2

Figure 2.4: Given a pointm in one image of cameraC1 only provides the information

on which ray it is located on in 3D space. Its original 3D position is unknown and

could be anywhere on the ray, e.g. M̃1, M̃2, or M̃3. Only when we know the same

scene point's position in another image m′, we can estimate its original position by

intersection of the rays, which is M̃2 in this case.
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B

f

m1

u1

f

m2

u2

ρ

C1 C2

M

Figure 2.5: The geometric relations between a 3D point M projected on images of

two cameras in the stereo normal case. Both image planes are parallel to and in the

same distance f to the baseline B. This results in a relation between them, that can

be described on a 2D plane to obtain the depth ρ. The disparity of the projection

points m1 and m2 is δ = u1 − u2.

To be able to perform this triangulation, the geometric relation between both

cameras needs to be described. The relation between the two cameras can be de-

scribed as the transformation of the camera centre of the �rst camera C1 by rotation

and translation to the second camera position [Schreer 2005]:

C2 = RC1 + t (2.6)

The simplest geometric case for this is the stereo normal case, where two images

are taken from two camera positions where the relation between both camera posi-

tions is only a translation without rotating (R = I). In this case the depth of the

point can be calculated by the following relation [Schreer 2005]:

ρ =
B · f
δ · du

(2.7)

In Equation 2.7, B is the length of the baseline between both cameras, i.e. the length

of t. f is the focal length, which is assumed to be the same in both cameras for

this scenario, δ describes the disparity of two pixels in x direction, their y position

is assumed to be the same, and du is the resolution of the CCD sensor in mm
pixel

. See

Figure 2.5 for a visualisation of the geometric relations behind this equation.

For the general case (R 6= I) a more complex model is needed to describe the

geometric relation between 3D points and their projection on two images. This

description is called Epipolar Geometry [Schreer 2005]. The Epipolar Geometry

describes the relation between a point MW in the world, and the camera centres C1

andC2, which together form a plane in 3D space, the epipolar plane. The connection

line between the two camera centres is called the baseline B. The projection of

MW in the �rst image is denoted as m1, and for the second image m2. In the

general case, there is an intersection point of the baseline with the image planes,
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B

l1

C1 e1

m1

l2

C2
e2

m2

M

Figure 2.6: The relation of a point in 3D space with its projections onto images

of two cameras in the Epipolar Geometry. The camera centres C1 and C2 are

connected by the baseline B. The intersection of the baseline with the image planes

introduces the epipoles e1 and e2. Using the projection of point M on the image as

m1 and m2 the corresponding epipolar lines l1 and l2 can be derived.

which is called epipole. We have e1 for the epipole in the �rst image and e2 for

the second image. The epipole may be located outside of the visible region of an

image. In the stereo normal case the epipoles are located at in�nity. The line

connecting e1 with m1 is called epipolar line l1, there is l2 for the second image

respectively [Schreer 2005, Hartley 2003]. An illustration of the relations in the

Epipolar Geometry can be seen in Figure 2.6.

The Epipolar Geometry can be described in terms of a matrix, which is called

Fundamental Matrix F by the following relation [Schreer 2005]:

l2 = Fm̃1 and l1 = FT m̃2 (2.8)

This means a point from one image can be mapped to a line in the other image,

which contains the corresponding point in that image.

When the Fundamental Matrix has been estimated, the projection matrices can

be extracted as follows [Hartley 2003]:

P1 =
[
I 0

]
, P2 =

[
[e2]×F

∣∣ e2] (2.9)

[e]× is a short notation for the following skew symmetric matrix [Schreer 2005, p. 71]: 0 −ez ey
ez 0 −ex
−ey ex 0

 with [e]× = −[e]T×. (2.10)
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2.1.3.3 Three View Geometry

Similar to the two view geometry, the geometry between three images can be de-

scribed in terms of a Trifocal Tensor. This is an extension of the Epipolar Geometry

and involves Fundamental Matrices between all three images, F12, F23, and F31.

I am not describing the Trifocal Tensor here as it is a more advanced concept

and not necessary to understand the theory described in the following sections. The

interested reader may refer to [Schreer 2005, p. 184�] or [Hartley 2003, p. 365�] for

a detailed description of this concept.

2.1.3.4 Estimation of F

In the last sections I have described the geometric relations in the Epipolar Geometry

and introduced the Fundamental Matrix F. The goal of SfM is the estimation of

the Epipolar Geometry given corresponding point pairs as they have been extracted

in Section 2.1.1 and matched in Section 2.1.2.

Based on these corresponding point pairs we can now estimate the Fundamental

Matrix, which provides all information about the geometry between the images as

well as external and internal camera parameters up to a scaling factor [Hartley 2003].

Following from Equation 2.8, for two corresponding points, a point m̃2 must be

located on the corresponding epipolar line, induced by the point in the other image

l2 = Fm̃1. For a point and a line in homogeneous coordinates their cross product is

zero, if the point is located on the line, so the following relation exists [Schreer 2005]:

m̃T
2 Fm̃1 = 0 (2.11)

In Equation 2.11, which is also called epipolar constraint, the corresponding points,

m̃1 and m̃2 are known, while F is unknown. With enough point pairs, a linear

equation system can be formed which can then be used to estimate the unknown

values of F [Schreer 2005]:

uTi f = 0 , with

ui =
[
xi2xi1 xi2yi1 xi2 yi2xi1 yi2yi1 yi2 xi1 yi1 1

]T
f =

[
f11 f12 f13 f21 f22 f23 f31 f32 f33

]T (2.12)

In Equation 2.12 xik and yik refer to the x and y coordinate of a point mik re-

spectively, k ∈ [1, 2]. So for n corresponding point pairs we get the following linear

equation system [Schreer 2005]:

Unf = 0, with Un =

u
T
1
...

uTn

 (2.13)

To solve the equation system, at least 8 point pairs are needed

[Longuet-Higgins 1981]. Given the fact that correspondences are often inex-

act or even contain outliers, it is desirable to use even more point pairs and form
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a quadratic system to estimate the Fundamental Matrix to minimise the error

[Schreer 2005]:

min
f
‖Unf‖2 (2.14)

When solving the linear equation system, two additional constraints have to be

considered: (1) the equation system has the trivial solution of f = 0, and (2) the

Fundamental Matrix has a rank of 2, so the singularity constraint needs to be

enforced [Schreer 2005, p. 82]. Using these constraints, an algorithm for estimating

the Fundamental Matrix using 7 point pairs is explained by [Schreer 2005].

For the implementation of an algorithm it is also important to perform condi-

tioning on the input values before estimating the Fundamental Matrix to achieve

stable results. A detailed description of this concept can be found in [Schreer 2005]

and [Hartley 1997].

2.1.3.5 Geometric Veri�cation and Outlier Removal

After the estimation of the Fundamental Matrix from a set of point pairs, it is now

possible to verify the result by testing whether the epipolar constraint, as given in

Equation 2.11, is ful�lled for all point matches. At this point outlier removal tech-

niques like RANdom SAmple Consensus (RANSAC) [Fischler 1981] can be applied

to clean up the point matches from outliers.

A RANSAC approach for SfM works by selecting random samples of the mini-

mum required size (7 or 8 point pairs dependent on the estimation algorithm) from

all matched point pairs, and estimates the Fundamental Matrix from it. Afterwards

all points, that are not in a sample, are tested whether they agree with the estimated

Fundamental Matrix or not, i.e. whether the epipolar constraint is ful�lled for them

[Schreer 2005]. If a sample contains outliers, a large amount of points will reject it.

This way it is possible to �nd a sample that does not contain outliers which is even-

tually accepted as the result of the RANSAC algorithm [Fischler 1981]. RANSAC

is very robust even when confronted with a lot of outliers and is therefor used in

many SfM applications [Raguram 2008].

2.1.3.6 Triangulation of 3D Points

An estimation of F provides the geometric relation between the cameras and allows

us to verify the point matches using the epipolar constraint. It does not include the

positions of the 3D points, which are yet to be found. For estimating the positions of

the points in 3D space, the projection matrices of both cameras need to be known.

These can be extracted from the Fundamental Matrix as shown in Equation 2.9.

Because the geometry estimation is not exact when working with real data, the

position of a 3D point must be approximated. A good approximation for the original

position is the centre of the shortest line segment that connects the rays that go

from the points projection on the image through the camera centre [Hartley 2003].

To �nd these positions a quadratic minimisation problem can be formulated, which

is based on the fact that the cross product of two points induces the line between
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them. For the projection of a 3D points on the image as de�ned in Equation 2.5 this

can be used to create the following equation, as for equal points, the line between

them does not exist so their cross product must be zero [Schreer 2005]:

m̃i ×PiM̃ = 0 (2.15)

There are two di�erent approaches to solve the linear equation system described

by [Schreer 2005]. One is the solution of the linear equation system using Direct

Linear Transformation (DLT), the other is an optimisation problem solved by the

least squares approach.

The triangulation coordinates are obviously unrelated to the real worlds co-

ordinates and may di�er in rotation and translation. The reconstruction is also

ambiguous in scale, that means that it is impossible from a reconstruction of im-

ages, without additional information, to infer information about the original size of

the scene in the real world [Hartley 2003].

For unknown camera calibration, the triangulation is even ambiguous up to a

projective transformation. So in order to reduce the ambiguity, additional informa-

tion, which for example can be in form of other images, has to be added. For more

information on this topic, the interested reader may refer to [Hartley 2003, p. 262�].

2.1.3.7 Bundle Adjustment

After the estimation of the Fundamental Matrix from a set of point pairs, it is

possible to verify the result by calculating for each point pair the distance of each

point from its corresponding epipolar line induced by the point in the other image.

It is also possible to calculate the distance of the rays that go from points in the

image into 3D space. Both of these distances should be zero in an optimal solution,

so an optimisation problem can be formulated to reduce the overall error for a set

of images, their estimated Fundamental Matrix and 3D point coordinates. Such a

procedure is called Bundle Adjustment [Triggs 1999].

Bundle Adjustment is typically applied after estimation of the Fundamental

Matrix and the 3D points to optimise the �nal result by reducing the overall error

in the solution. It is mathematically formulated as [Hartley 2003]:

min
P̂i,M̂j

∑
ij

d(P̂iM̂j ,m
i
j)

2 (2.16)

In Equation 2.16, d(x, y) is the distance of two points in an image and describes the

distance of the projection of an estimated point position M̂ onto the image plane,

and the original pixel position from which M̂ had been estimatedm. This procedure

is performed for all points and images together.
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Figure 2.7: Comparison of a sparse reconstruction point could (left) and a dense

reconstruction (right) of a building front. The example has been created using the

Bundler SfM software [Snavely 2006] and PMVS2 [Furukawa 2010b] from a dataset

of 29 images.

2.2 Dense Reconstruction

The next step towards a �nal 3D model after SfM is dense modelling or dense recon-

struction using Multi-View-Stereo (MVS). SfM only provides a sparse reconstruc-

tion by providing 3D coordinates for the corresponding point pairs, but provides

no information for the parts of the scene between these points. MVS algorithms

provide methods for reconstructing a dense point cloud from images for which the

projection matrix P has been estimated [Furukawa 2010b]. An example is shown in

Figure 2.7, showing a sparse point cloud which is the result of SfM and a dense point

cloud created by an MVS algorithm afterwards. Additionally to the estimation of

the points location, MVS also includes the estimation of point normals, which is a

valuable information for surface reconstruction [Schönberger 2016b]. The core prob-

lem solved by Multi View Stereo algorithms can be described as dense pixel-wise

correspondence search [Schönberger 2016b].

The method provided by [Furukawa 2010b] uses an iterative approach, which

starts from a sparse point cloud and expands it. Their approach is described as

a match, expand, and �lter iteration. The match step detects features in the im-

ages using the Harris Corner and Edge Detector [Harris 1988] in combination with

a Di�erence-of-Gaussians operator. These are matched across multiple images and

result in a sparse set of patches associated with the detected image regions. The ex-

pansion step takes existing patches and generates new ones in nearby empty spaces

to generate a more dense set of patches. Incorrect matches are removed by �ltering

patches based on visibility and other constraints. The expand and �lter steps are ap-

plied iteratively towards a dense reconstruction of the whole scene [Furukawa 2010b].

A comparison of di�erent MVS implementations will follow in Section 3.1.2 by

evaluating existing approaches and extracting more details about their implemen-

tation.
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(a) Triangle mesh structure of a surface. (b) Smooth rendering of a surface mesh.

Figure 2.8: Triangle mesh of a surface which has been created using the Poisson

Surface Reconstruction method described by [Kazhdan 2013] from the point cloud

from Figure 2.7.

2.3 Surface Reconstruction

The task of estimating a surface from a point cloud of an observed scene is known

as surface reconstruction [Kazhdan 2013] or surface �tting [Wefelscheid 2011].

The input of a surface reconstruction algorithm may be a point cloud with

estimated normals [Kazhdan 2013], but also point clouds without normals or single

depth images are possible [Berger 2013]. Surface reconstruction algorithms also

vary in the form of the output i.e. the representation of the surface, which may be a

parametric surface, an implicit surface, or a triangulated surface mesh [Berger 2013].

Parametric surfaces and implicit surfaces are de�ned by an equation in Euclidean

space. They are usually not suited to represent su�ciently complex 3D structures

which are typically observed in the task of 3D reconstruction, so triangulated surface

meshes are used in this �eld [Berger 2013]. Figure 2.8a shows the triangle mesh

structure of a surface estimated from the point cloud of a building front, which has

been obtained from a dense reconstruction. The surface can also be rendered by

�lling the triangles with colour or texture which results in a visualisation of the 3D

representation of an object or scene as it is seen in the real world. See Figure 2.8a

for an example rendering result.

A large variety of di�erent algorithms exist in the �eld of surface reconstruction

which results the large amount of possible applications [Berger 2013]. A class of

algorithms that works on unorientated point clouds (without normals) use a subset

of the input points as vertices and start interpolating a surface from that using De-

launay triangulation. One example is the surface reconstruction by Voronoi �ltering

described by [Amenta 1999]. These algorithms are restricted by using only points

that are available in the input source. By using the existing points without interpo-
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lation they su�er from the same error and noise as the input data. This results in

the reconstruction surface to be very uneven. Allowing the surface reconstruction

result to contain points outside of the input set allows the creation of more smooth

surfaces which is achieved by interpolating between many points [Boissonnat 2000].

For surface reconstruction from point clouds that include normals a large variety

of di�erent methods have been created, which include techniques like the compu-

tation of an indicator function, locally �tting functions and moving least squares

approaches [Berger 2013]. A survey of di�erent triangulation methods can be found

in [Cazals 2006]. [Berger 2013] evaluate the performance of di�erent methods for

surface reconstruction in a benchmark.
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In this chapter I will describe and analyse existing Structure from Motion (SfM)

processing chains to determine how algorithms are implemented and which common

parts as well as di�erences exist among them. This will in�uence the design of the

framework, by focusing the analysis on the requirements and the general design of

current state of the art 3D reconstruction algorithms. The goal is to extract how

di�erent steps are separated and which data structures need to be implemented for

the steps to interact with each other, to be able to create a modular implementation.

This chapter also builds up on Chapter 2 by �lling the theory part with de-

scription of existing implementations, adding more details to how SfM algorithms

are implemented and which work additionally to the theory part needs to be done

to achieve 3D reconstruction in practise. This is the basis on which the design of

the framework in Chapter 4 and the implementation of SfM data structures and

algorithms in Chapter 5 will build upon.

The review is split into three parts, the �rst part, Section 3.1, is a survey of ex-

isting processing chains. Section 3.2 describes a generic processing chain extracted

from the information gathered while reviewing other implementations. It also cov-

ers the data structures that are common about these implementations leading to an

overview of how the data structures provided by the processing framework should

be implemented. Finally an overview about existing open and closed source imple-

mentations is given in Section 3.3.
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3.1 Survey of Existing Processing Chains

Image-based 3D reconstruction is a multi-step process, so research often focuses on

a speci�c part of the process and provides a solution or improvement of that speci�c

part of a problem. In this survey I am also separating the processing steps into

three major parts, to discuss these speci�c parts of the implementations separately:

• Structure from Motion (SfM) � sparse reconstruction

• Multi View Stereo (MVS) � dense reconstruction

• Surface Reconstruction � estimation of a surface mesh from a point cloud

3.1.1 SfM Processing Chains

The methods applied in SfM processing chains di�er dependent on the application

scenario and input data. Dependent on the image source more or less pre-processing

is needed and also the number of input images plays an important role when choosing

which methods to apply.

In the following I di�erentiate between implementations which focus more on

large scale reconstruction using images from diverse sources, and implementations

which are focused on an environment with homogeneous camera parameters and

known environment.

The applications of the former category deal with input images that are in un-

known order and may not even be taken for the purpose of 3D reconstruction.

These are for example images downloaded from the internet. The methods in this

category I am going to review are [Agarwal 2011], [Wu 2013], [Frahm 2010], and

[Schönberger 2016a].

Implementations of the latter deal with images that are covering only one object

or a pre-de�ned area. This is mainly the case when images where observed with the

goal of the 3D reconstruction in mind, mostly using a single camera. The reviewed

implementations are [Irschara 2010], [Wefelscheid 2011], and [Daftry 2015].

3.1.1.1 �City-Scale� 3D Reconstruction from Unstructured Images

In [Agarwal 2011] a system for reconstruction of a city from a large set, of up to

150K images is described. They coin the term �city-scale 3D reconstruction� using

images from an unstructured source, e.g. internet platforms like Flickr1 by searching

for an image tag like �Rome� and using those images to perform a 3D reconstruction

of the inner city of Rome. An example point cloud is shown in Figure 3.1a.

The characteristics of the input images are that they are taken from a very

diverse set of cameras with mostly unknown camera calibration and parameters.

Also the resolution and quality of the images as well as illumination conditions vary

a lot among di�erent images. These conditions require a lot of processing to �lter

out irrelevant images and to �nd correspondences between images [Agarwal 2011].

1Flickr, a photo sharing platform: https://www.flickr.com/

https://www.flickr.com/
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(a) 3D reconstruction by

[Agarwal 2011], using 2K

images. Cameras in black.

(b) Point cloud of the inner city of Rome from 21K registered

out of 75K images by [Schönberger 2016a].

Camera positions in red.

Figure 3.1: 3D Reconstruction result examples from related work.

Another method is described by [Wu 2013], which while aiming at a general

purpose SfM processing chain, also apply to large scale of images like the dataset

used by [Agarwal 2011] and is built to deal with inhomogeneous image input. They

additionally evaluate the time complexity of the SfM process aiming to develop a

method that is linear in the amount of images. This is done by using an incremental

approach for the SfM part and applying heuristics to limit the amount of work spent

on feature matching and Bundle Adjustment.

The approach by [Frahm 2010] focuses on maximum performance, implementing

a system that is able to perform a dense reconstruction on 3 million images on a

single PC with a computation time of one day.

The latest state of the art SfM algorithm is implemented by [Schönberger 2016a].

They provide improved accuracy compared to the previously mentioned methods

and also leverage the possibilities of GPU programming to handle large amount

of images. Their incremental SfM approach uses a Next Best View selection for

�nding relevant images to add to the reconstruction, to make sure the quality of the

output is not in�uenced negatively by badly chosen image pairs. An example result

is shown in Figure 3.1b showing a reconstruction of the inner city of Rome using an

input of 75K images.

Preprocessing Preprocessing is an important part in large scale reconstruction

applications as the image source is very inhomogeneous in terms of image dimen-

sions, camera parameters, and illumination conditions [Agarwal 2011]. The prepro-

cessing of the input images, is performed independently per image, so it can be

massively parallelized. It involves extraction of information, as far as it is available.

This includes meta data such as EXIF [CIPA 2012] which may provide camera pa-

rameters like focal length or GPS coordinates. The focal length can be used as a

prior in the estimation of the internal camera parameters [Agarwal 2011]. Extracted

GPS data can be used after the reconstruction process to anchor the model in the

real world position, but also to �nd nearby images when clustering images for match-

ing [Frahm 2010]. Large images can also be down-sampled, preserving their aspect

ratios and scaling the focal length to reduce computation cost [Agarwal 2011].
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Feature Extraction and Description After the information extraction and nor-

malisation, SIFT features [Lowe 2004] are extracted from the grey-scale version of

each image in most approaches [Wu 2013, Agarwal 2011, Schönberger 2016a]. While

using SIFT features as the default, the implementation of [Schönberger 2016a] is

�exible about the usage of the point descriptors. As an alternative, binary features

[Heinly 2012] may be used, which are more e�cient, but less robust.

Besides using point features, when working with a large number of images, ad-

ditional image features are extracted to perform clustering on the images before

matching. [Frahm 2010] proposes a method which uses GIST [Oliva 2001] features

to describe the general appearance of the image, which is used to cluster images

before matching.

Image Matching Given the diversity and also the amount of images used in

these approaches multiple steps need to be performed to get su�cient results for

image correspondence. In [Agarwal 2011] a combined approach using vocabulary

tree search [Nister 2006] for searching match candidates and approximate nearest

neighbour search for feature matching is used. A matching point pair, that passes

Lowe's ratio test [Lowe 2004] is accepted.

Before the actual matching, [Frahm 2010] uses GIST [Oliva 2001] features to

cluster images to obtain a set of iconic views and leverages GPU computing for

massive parallel matching of the image features. Image matching is then performed

inside of these clusters. Afterwards a representative image is selected for each cluster

and nearby clusters are detected using a vocabulary tree search on these images.

They also use geo-location information if available for a cluster to improve these

matchings. The search for candidates before matching is necessary because for a

number of images in the scale of 100.000 a pairwise matching, while computationally

feasible, would be a huge waste of computation power, because most images do not

match [Agarwal 2011]. [Wu 2013] describes a preemptive matching algorithm that

reduces the amount of comparison operations for each image pair by sorting the

feature vectors and skip an image pair early if the �rst few features do not match.

Their approach aims to achieve SfM in linear time on the number of images. Using

this approach, they are able to reduce the amount of computation signi�cantly, as

75% to 98% of the images, in the large data sets they used, did not match and could

be rejected in an early stage.

The result of the matching is a graph with images as the nodes and edges between

corresponding images pairs. It is called match graph by [Agarwal 2011] and scene

graph by [Wu 2013]. I will use the term image graph in the following, because in a

general case, the graph contains images and the relation between them.

The image graph may be adjusted after it has been created, like in

[Agarwal 2011], where they perform further steps on the image graph i.e. add fur-

ther matching pairs after an initial instance of the image graph. Also in large data

sets the graph typically consists of connected components which can be separated

for computation in parallel [Agarwal 2011].
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Figure 3.2: An example of outlier matches on the �Der Hass� dataset by

[Fuhrmann 2014]. Despite other outliers, it can be seen that some points of the wall

in the background are matched against the stand of the statue in the foreground.

Filtering of the Image Graph and Geometric Veri�cation Automatically

estimated corresponding point pairs are not guaranteed to belong to the same points

in an image and especially in large size dataset the outlier rate is expected to be very

high [Wu 2013]. Therefor after matching, or during the matching process, validation

of the matched key points and geometric veri�cation is performed to �lter out wrong

matches. Figure 3.2 shows an example of a point matching which contains a lot of

outliers.

A commonly used technique for outlier removal is RANSAC [Fischler 1981],

which has been explained in Section 2.1.3.5. This approach is used by [Agarwal 2011]

to verify the results of the approximate nearest neighbour search. The estimated

Fundamental Matrix calculated in this step may later be reused when estimating

the 3D geometry [Agarwal 2011, Schönberger 2016a]. In [Frahm 2010] RANSAC is

applied within each cluster of the image graph before connecting related clusters

with each other.

[Schönberger 2016a] use an additional approach for geometric veri�cation of an

image pair. They try to �nd a homography for mapping points from one image to

another, which can be based on the Fundamental Matrix. If a valid transformation

can be found for a certain amount of points, the veri�cation succeeds, otherwise an

image pair is discarded.

3D Geometry Estimation and Bundle Adjustment After determining the

image graph, an algorithm for 3D geometry estimation is applied on each connected

component of the graph [Agarwal 2011, Wu 2013].

[Schönberger 2016a], [Frahm 2010] and [Wu 2013] use an incremental reconstruc-

tion approach starting with an initial image pair to determine the Epipolar Geometry

and 3D coordinates of corresponding points. The reconstruction is then completed

by incrementally adding more and more images. One approach of �nding an optimal

initial image pair is described in detail by [Beder 2006].
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In [Schönberger 2016a] a Next Best View algorithm is used to �nd new images

to add to the reconstruction. This algorithm selects images, which are supposed

to add the best value to the current reconstruction state. New images are used to

triangulate additional points, but also to verify and improve the existing solution,

if the image adds information form a di�erent view.

The approach of [Wu 2013] is an incremental approach aiming for a linear com-

plexity of the algorithm. SfM as well as Bundle Adjustment [Triggs 1999] are applied

incrementally, by adding more and more images. They are however not run in full,

[Wu 2013] has measures to decide to add more images and skip Bundle Adjustment

for a few iterations as well as applying it to a part of the scene. This makes their

approach very e�cient.

The result of this step is an estimation of the external and internal camera

parameters in form of the projection matrix P for each image, as well as the Funda-

mental Matrix F for each image pair (cmp. Section 2.1.3.4). The resulting 3D points

which can be calculated from the matched key points for each image pair result in

a sparse 3D reconstruction [Wu 2013, Agarwal 2011] (cmp. Section 2.1.3.6).

The estimation of 3D geometry is often directly combined with Bundle Adjust-

ment, which is applied on intermediate results [Frahm 2010, Wu 2013]. Bundle

Adjustment does not change the existing data structure, but improves the existing

result by minimising the overall estimation error [Agarwal 2011]. The idea behind

Bundle Adjustment is explained in Section 2.1.3.7

3.1.1.2 SfM Using a Single Camera on a Known Scene

A processing chain described in [Wefelscheid 2011], and similar methods by

[Irschara 2010] and [Daftry 2015], aim for the reconstruction of buildings by using

images obtained from a camera mounted on an unmanned aerial vehicle (UAV).

In contrast to the methods described in the previous section, these methods op-

erate in an environment where the images where taken explicitly with the goal of

3D reconstruction. The images in these approaches are taken from a single camera

which may be calibrated beforehand so most of the image parameters are known.

The known information can be completed even more by using the positioning in-

formation of the UAV to improve feature matching and the creation of the image

graph as shown by [Stathopoulou 2015]. Using this approach the SfM algorithm can

be initialised with prior information which is not far from the real values so a very

accurate reconstruction can be performed [Wefelscheid 2011, Daftry 2015].

In [Wefelscheid 2011] key point detection is implemented using the Förstner

Operator (cmp. Section 2.1.1), which is better suited for human made structure

like buildings. The description of the key points is the same as in other approaches

described before, using the SIFT descriptor.

A Loop closure step is used to detect images that capture the same part of a

scene. This is done by computing a new descriptor per image based on the images

SIFT features and comparing these features to �nd similar images.

After loop closure an image graph is computed. This works on image triplets
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instead of image pairs. From these the Trifocal Tensor (cmp. Section 2.1.3.3) is

computed which contains the Epipolar Geometry information between all images

in the triplet. Similar to the Fundamental Matrices this provides the projection

matrix for the images, which are used to compute 3D points for the corresponding

point pairs. Their approach also includes Bundle Adjustment to minimise the error

of estimated geometry in all images in the image graph [Wefelscheid 2011].

A very similar approach is described by [Irschara 2010] also using SIFT features,

two matching steps, a graph and then SfM on image pairs. However they use image

pairs instead of triplets.

3.1.2 MVS Implementations

After the estimation of the 3D geometry of a model, which includes the sparse

reconstruction, the next step is to get a more detailed model of the scene covering a

dense point cloud. Algorithms in this �eld are called Multi-View-Stereo algorithms,

because they use multiple images for estimation of a dense point cloud. Multiple

images are used, as it has been shown by [Rumpler 2011], that redundancy bene�ts

the accuracy of the reconstruction.

Most MVS algorithms operate on the same input, which is a list of im-

ages for which the projection matrix P has been estimated [Furukawa 2010b,

Schönberger 2016b]. [Frahm 2010] however goes directly from the image matching

to the dense reconstruction without doing sparse reconstruction of the scene. For an

accurate reconstruction images need to be normalised in terms of image resolution

to avoid over or under-sampling [Schönberger 2016b]. Also if a distortion model has

been estimated for an image, the images should be normalised by undistorting it

before applying the MVS algorithm [Furukawa 2010b, Schönberger 2016b].

The methods described in [Furukawa 2010a] provide an algorithm that wraps

around existing MVS implementations to allow them to operate on very large

datasets. It includes a view clustering algorithm that can separate the input data

set into multiple clusters and merge the resulting point clouds from MVS algorithms

applied to these clusters.

For all reviewed implementations the output is a dense point cloud in 3D space

which also includes normal information, which can be used for surface reconstruction

[Furukawa 2010b, Frahm 2010, Schönberger 2016b].

3.1.3 Surface Reconstruction Algorithms

As already explained in Section 2.3 a large variety of surface reconstruction algo-

rithms exist, which can be applied in di�erent applications with di�erent input and

output data. For my thesis I am limiting the scope of description to one algorithm

which is widely used in 3D reconstruction applications, which is the Poisson Surface

Reconstruction described by [Kazhdan 2013]. To generate a surface mesh from the

estimated dense point cloud, this approach is referenced in many of the processing

chains reviews before [Schönberger 2016b, Furukawa 2010a, Furukawa 2010b].
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3.1.4 Further Processing

The estimation of a 3D mesh is not necessarily the end of a processing chain. There

are more steps that could be added before, after or in between the processing chain

and a framework should be designed to allow this.

An example of processing steps to apply before 3D reconstruction is the estima-

tion of optimal camera positions given a rough shape of the object that should

be reconstructed. Such an algorithm has been described and implemented by

[Brandt 2016], using a multi-step processing chain.

For post-processing after 3D reconstruction a variety of use cases exist. There

is for example the possibility of aligning the estimated 3D model in the real world

and combine it with a map as it has been done using geo reference information from

image meta data in [Frahm 2010].

The alignment of multiple independently created meshes for indoor and outdoor

scenes of a building are put together in [Cohen 2016] by detecting window positions

and searching for similar window alignment in related models.

After a 3D mesh has been estimated certain operations can be performed to

re�ne the solution. [Jawer 2015] describes an approach for �nding erroneous parts

in automatically reconstructed 3D meshes. This information can be used for further

methods for mesh repairing which are described by [Attene 2010]. Their methods

provide ways of ensuring certain properties of the mesh structure which are necessary

for further mesh processing, e.g. the order of points around triangles or normal

directions for determining inside and outside.

Another post-processing method for noise removement from triangle meshes is

described by [Fabio 2003].

In the �eld of image-based 3D reconstruction it is also desirable to apply the

texture, which is available from the images to the surface mesh. One approach,

which is described by [Stathopoulou 2011] covers the task of projecting images onto

a surface mesh. They describe the texturing of high resolution meshes that contains

a lot of details and �ne grained structure as well as low resolution models.

Another example of further processing is the evaluation of the estimated point

clouds and mesh. An example is SyB3R, which is a benchmark for image-based

3D reconstruction algorithms described in [Ley 2016]. Their processing chain is

designed to produce ground truth data by rendering images from 3D models, which

are then fed into a SfM and MVS pipeline. The results can then be compared with

the ground truth to evaluate the quality of the reconstruction.

3.2 Generic SfM Processing Chain and Data Structures

Concluding from the previous review of 3D reconstruction implementations, the

common steps and intermediate data structures that are the same among most

implementations can be extracted.
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Figure 3.3: A high level overview of a generic 3D reconstruction processing chain.

Images are the input of the SfM step, which produces an image graph, a sparse point

cloud and the external and internal camera parameters encoded in the projection

matrix P. These are then used by the MVS step to produce a dense point cloud.

Surface reconstruction takes the dense point cloud, which includes point normals to

estimate a surface mesh.

3.2.1 Processing Steps

The very high level of a 3D reconstruction processing chain consists of the following

steps, which match the separation which has already been applied in the previous

sections: SfM → MVS → Surface Reconstruction. The relevant data structures can

be extracted, which are images, an image graph consisting of image pairs, a sparse

and dense point cloud, and a surface mesh. The processing steps and their relation

as well as involved data structures are illustrated in Figure 3.3.

The SfM part can be broken down into further steps, which are: Preprocessing→
Feature Extraction (Keypoint detection and description) → Feature Matching →
Match Filtering → Geometry Estimation → Geometry Re�nement. In most of

the reviewed implementations, many of these steps are combined in one step, but

could as well be covered by independent implementations. For example key point

detection and description are mostly covered by SIFT in one step, but are separated

in [Wefelscheid 2011] by using a di�erent point detector. Also Feature Matching

and Match Filtering, as well as Geometry Estimation and Geometry Re�nement

(Bundle Adjustment) may overlap or be merged into one step. The main data

structures needed to represent the communication between these steps are images,

key points, image pairs, an image graph, and a point cloud. Figure 3.4 shows a

detailed relation of steps and data structures used in the SfM processing chain.
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Figure 3.4: A detailed overview of the relation of processing steps and data struc-

tures in the SfM processing chain. Processing steps are in boxes, data structures in

ellipses, optional steps are dashed.

The input of the processing chain are images. Preprocessing extracts meta data

and attaches them to the images. The Feature Extraction part includes key point

detection and description which attaches key point information to the images. The

next part is Feature Matching, which optionally includes image clustering. After

that the key points are matched, which results in an image graph which consists

of image pairs. The matches may optionally be �ltered, before performing 3D Ge-

ometry Estimation, which results in the Fundamental Matrix to be added to all

image pairs, as well as a set of images with 3D geometry information in form of the

projection matrix P and a sparse 3D point cloud. The estimated geometry may be

re�ned in a Geometry Re�nement step e.g. by using Bundle Adjustment.
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3.2.2 Data Structures

In each of the processing steps of a SfM processing chain, di�erent data structures

are produced, which are given to the next step to work on them. For example after

Feature Matching a set of matching point pairs between two images is returned,

the 3D geometry estimation de�nes the Epipolar Geometry for each image pair and

the result of the Dense Reconstruction is a point cloud in 3D space. An important

part of the framework is the de�nition of these data types to ensure interoperability

between di�erent algorithms. In this section I de�ne the data types by extracting

the information from the previous review of processing chains.

Besides the properties listed below, all data types in the framework should be

able to store additional meta data in form of key-value pairs as well as custom data

attached, to allow implementing methods that have not been reviewed here.

3.2.2.1 Images

The main input source of each of the algorithms are images. Digital images can be

stored in many di�erent formats, so the framework should not be limited by the

storage format of the image used. A library like OpenCV [Bradski 2000] provides

methods for reading common image formats.

The image data structure should store a reference to the image �le it represents.

It should not directly load the raw image data when it is created, to save memory

and allow the usage of a large amount of images, as it has been shown in the reviewed

processing chains in Section 3.1. Methods for reading the image data are provided

to be used when it is needed. Besides that the image data structure needs to be

able to store meta data information such as EXIF [CIPA 2012] which is used by

[Agarwal 2011, Frahm 2010].

Additionally also features like key points and their descriptors are stored for each

image. This should be optimised for SIFT [Lowe 2004], because as explained above

that is the approach used by most of the implementations. Besides SIFT features,

the data structure should allow storing other descriptor types. [Frahm 2010] uses

GIST features additional to SIFT for clustering images, so an option to add addi-

tional data references to images can be useful. Also [Wefelscheid 2011] computes an

additional descriptor for describing each image.

After the SfM step an image should store the estimated camera parameters K,

R, and t, as well as the projection matrix P.

The image clustering before matching depends a lot on the matching process, so

I decided not to introduce a generic data structure for the image clusters but only

implement the input of the matching process (list of images) and the output (image

graph). For implementing image clustering no extra data structure is needed as a

cluster would be just a list of image lists or can be implemented as a custom data

structure which will be described in Section 4.4.2.

The following table shows a list of properties to be implemented for the image

data structure. Optional means that creating a data structure does not require to

add this information, it may be added in future processing.
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Image

Property Optional Type Description

width no Integer Image width in px.

height no Integer Image height in px.

keypoints yes KeypointList List of key points.

P yes Matrix 3× 4 Projection matrix.

camera parameters yes CameraParameters External and internal

camera parameters.

CameraParameters

Property Optional Type Description

R no Matrix 3× 3 Camera orientation.

t no Vector 3 Camera position.

K no Matrix 3× 3 Internal calibration.

f no Float Focal length.

ccd_width no Float Resolution in px
mm .

KeyPointList

Property Optional Type Description

keypoints no List List of key points.

descriptors yes List List of key point descrip-

tors.

3.2.2.2 Image Pair and Image Triplet

A pair or triplet of images can have common information, so it should have its own

data structure. For an image pair the Epipolar Geometry in form of a Fundamental

Matrix F, as well as the key point matches should be stored. For the image triplet

the geometry is described by the Trifocal Tensor T. An image pair or triplet also

contains references to the images it refers to. The following table describes the

properties of the ImagePair and ImageTriplet data structure.

ImagePair / ImageTriplet

Property Optional Type Description

imageA no Image reference First image.

imageB no Image reference Second image.

imageC no Image reference Third image.

Only for ImageTriplet.

keypointMatches yes List List of integer pairs referencing

the key points that match.

F yes Matrix 3× 3 The Fundamental Matrix.

Only for ImagePair.

T yes Tensor The Trifocal Tensor.

Only for ImageTriplet.
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3.2.2.3 Image Graph

The image graph is a list of image pairs or image triplets. It should allow to access

the image pairs and the list of individual images separately to allow working with

the pairs, as well as iterating over single images dependent on what is needed for an

algorithm input.

An image graph may optionally store information about points seen in multiple

images when a matching algorithm does not produce point pairs, but clusters of

points seen in more than two images [Gil 2010]. For these matching key points

found in multiple images, the term track is introduced by [Snavely 2006].

ImageGraph

Property Optional Type Description

imagePairs no List List of ImagePair references. May be empty.

imageTriplets no List List of ImageTriplet references. May be empty.

images no List List of Image references.

tracks yes List List of point references seen in multiple images.

3.2.2.4 3D Point Cloud (Sparse and Dense)

A 3D point cloud is a list of points represented by their 3D coordinates [X,Y, Z]T .

For each point additional information may be stored, if available. These can be point

normals, which indicate a direction of the surface the point is on, which is typically

estimated by an MVS algorithm [Schönberger 2016b, Furukawa 2010b]. Also colour

information in RGB format can be stored, which is usually taken from the images'

key points to allow a better visualisation of the point cloud.

PointCloud

Property Optional Type Description

coordinates no List List point coordinates [X,Y, Z]T .

normals yes List List of point normal vectors.

colours yes List List of point RGB colour information.

3.2.2.5 3D Mesh

A 3D mesh in the form that is used in 3D reconstruction is typically represented

as a triangle mesh [Berger 2013]. A triangle mesh consists of vertices and a set of

triangles that connect them to form the surface. The digital representation depends

on the used library, so the framework would only provide a container class that has

one property referencing the triangle mesh data structure.



32 Chapter 3. Review of Processing Chains

3.3 Software Review

While the main goal of my thesis is the development of a framework, for this frame-

work to be of any use, some algorithms need to be implemented using it. In the

following I will review existing algorithm implementations, which can be used to

create modules for the framework. The implementation of most algorithms from

the reconstruction processing chain is not trivial, so the reuse of existing code is

necessary to provide useful functionality.

Bundler is a SfM software written by Noah Snavely. It o�ers an implementation

of the SfM pipeline for feature matching and 3D geometry estimation including

Bundle Adjustment. The algorithms are described in [Snavely 2006], which covers

the initial release of the software and [Agarwal 2011], in which the software has been

extended to work in city scale applications. It is written in C and provides separate

binaries for the matching and 3D geometry estimation step, which can be used to

integrate them into the framework.

Language: C

License: Free Software (GNU General Public License)

URL: http://www.cs.cornell.edu/~snavely/bundler/

https://github.com/snavely/bundler_sfm

Visual SfM is a software created by Changchang Wu, which provides a graphical

user interface for the whole SfM pipeline from key point extraction and matching

over SfM to MVS. The SfM algorithms used in the implementation are described

in [Wu 2013]. For MVS the methods and software by [Furukawa 2010a] (CMVS)

and [Furukawa 2010b] (PMVS2) are integrated. The GUI software is closed source,

however parts of it have been released as Open Source, which are SiftGPU and

Multicore Bundle Adjustment, which are described below.

License: Closed Source, free for personal or academic use.

URL: http://ccwu.me/vsfm/

SiftGPU is an implementation of SIFT [Lowe 2004], which leverages GPU for

computation of SIFT features and also provides an implementation for feature

matching. It is written by Changchang Wu as part of Visual SfM [Wu 2013].

Language: C++

License: Open Source, custom license, free for personal or academic use.

URL: http://cs.unc.edu/~ccwu/siftgpu/

http://www.cs.cornell.edu/~snavely/bundler/
https://github.com/snavely/bundler_sfm
http://ccwu.me/vsfm/
http://cs.unc.edu/~ccwu/siftgpu/
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Multicore Bundle Adjustment also known as Parallel Bundle Adjust-

ment (PBA) is an implementation of Bundle Adjustment that leverages CPU and

GPU parallelism and is part of Visual SfM by Changchang Wu. The algorithm and

implementation are described in [Wu 2011].

Language: C++

License: Free Software (GNU General Public License)

URL: http://grail.cs.washington.edu/projects/mcba/

PMVS2 is a MVS implementation developed by Yasutaka Furukawa and Jean

Ponce. The algorithm is described in [Furukawa 2010b] and was mentioned among

the reviewed implementations in Section 3.1.2.

Language: C++

License: Free Software (GNU General Public License)

URL: http://www.di.ens.fr/pmvs/

CMVS is a system for internet scale MVS built on top of PMVS2 and was written

by Yasutaka Furukawa. It takes the output of a SfM algorithm and decomposes it

into clusters, which are then separately given to an MVS algorithm. The results are

merged back into a complete model after computation. The algorithm is described

in [Furukawa 2010a], which is part of the overview in Section 3.1.2.

Language: C++

License: Free Software (GNU General Public License)

URL: http://www.di.ens.fr/cmvs/

COLMAP is a complete 3D reconstruction pipeline implementation written by

Johannes Schönberger. It is an Open Source implementation providing separated

executables for all processing steps from key point detection and matching over SfM

to MVS and surface reconstruction. The software heavily relies on GPU computa-

tion for maximum performance, but is at the time of this writing limited to Nvidia

GPUs, which makes parts of it unusable on other systems. The implemented algo-

rithms are described in [Schönberger 2016a] and [Schönberger 2016b] and have been

summarised in Section 3.1.

Language: C++

License: Free Software (GNU General Public License)

URL: https://colmap.github.io/

https://github.com/colmap/colmap

http://grail.cs.washington.edu/projects/mcba/
http://www.di.ens.fr/pmvs/
http://www.di.ens.fr/cmvs/
https://colmap.github.io/
https://github.com/colmap/colmap
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OpenCV is a generic computer vision library, which also provides support for SfM

[Bradski 2000]. It provides implementations of key point detection and description

algorithms like SIFT [Lowe 2004], SURF [Bay 2008], Harris [Harris 1988], and many

others. It also provides data structures and methods that can be used to implement

key point matching and estimation of 3D geometry. Since version 3.1 it also includes

a complete implementation of a simple SfM pipeline.

Language: C, C++, Python

License: Open Source (3-clause BSD License)

URL: http://opencv.org/

http://docs.opencv.org/3.1.0/d8/d8c/group__sfm.html

SyB3R is an Open Source 3D reconstruction evaluation framework implemented

by Andreas Ley. The framework generates ground truth data as well as images from

a 3D scene which can be put into a 3D reconstruction tool chain to compare the

result with the ground truth for evaluation [Ley 2016].

Language: C++

License: Free Software (GNU General Public License)

URL: http://andreas-ley.com/projects/SyB3R/

PoissonRecon is an Open Source surface reconstruction implementation by

Michael Kazhdan. It implements the Poisson Surface Reconstruction methods de-

scribed in [Kazhdan 2013].

Language: C++

License: Open Source (MIT License)

URL: https://github.com/mkazhdan/PoissonRecon

http://opencv.org/
http://docs.opencv.org/3.1.0/d8/d8c/group__sfm.html
http://andreas-ley.com/projects/SyB3R/
https://github.com/mkazhdan/PoissonRecon
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In this chapter I describe the concepts of the framework that is developed for

the creation of SfM processing chains. The implementation of the framework is

based on a generic framework for image processing which has been developed at the

Computer Vision and Remote Sensing department at TU Berlin. For my thesis,

I have revised the current implementation and adjusted the data model and work

�ow design to be more �exible and extensible to �t the needs for implementing the

SfM pipelines on top of it. This resulted in a rewrite of the underlying library.

I will start the description of the framework by de�ning the data model for rep-

resenting processing chains in Section 4.1. After that, the components for executing

a processing chain and handling the data are described in Section 4.2.

The framework provides two interfaces for working with processing chains, which

is a Graphical User Interface (GUI) and a Command Line Interface (CLI). The GUI

is used for creating and running a processing chain and also allows visualisation
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of intermediate and �nal processing results. The CLI is used to run processing

chains. Processing chains may be developed by hand as the �le format used is human

readable and writable. User interfaces as well as the con�guration �le are explained

in Section 4.3. Finally Section 4.4 explains how to implement data structures and

algorithms for the framework.

4.1 Data Model

The goal of the framework is to provide methods for creating implementations of

algorithms that can be easily reused in di�erent scenarios and also be con�gured

using parameters at runtime. It should be possible to implement an algorithm and

load it in di�erent processing scenarios as a plugin, without the need to recompile

the code in a di�erent application.

To achieve this, the processing framework should de�ne an interface that is

common among all implemented plugins so the execution of an algorithm as well as

input and output data can be handled in a standardised way.

4.1.1 Module

The �rst thing to de�ne for this purpose is that algorithms are implemented as

modules in form of a shared library, which can be dynamically loaded at runtime. A

module is a self-contained implementation of an algorithm, that communicates with

the framework through inputs and outputs, while its behaviour can be controlled

using parameters. Input data and parameters are provided to the module before the

execution. The output data is returned by the module as soon as it is completed

and then retrieved by the framework for delivery to other modules or visualisation.

The concept is visualised in Figure 4.1.

Besides output data, a module may also produce logging output to provide

details about the processing. It may also export progress information to give an

indication on how much of the processing work is �nished to give the user feedback

on when to expect the processing to be done.

Module

Implementation

of an Algorithm

parameters

inputs outputs

Figure 4.1: A module is an implementation of an algorithm, which converts input

data into output data. The algorithm behaviour can be controlled using parameters.
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Bool String Integer Image

List

Map

Data

Figure 4.2: UML class diagram of the basic data types provided by the framework.

Bool, String, Integer, Image, List, and Map extend from the Data class. Map and

List are aggregations of Data.

4.1.2 Input and Output Data

For the framework to be able to handle the input and output data of modules in

a meaningful way, the data structures also need to implement an interface de�ned

by the framework. A data implementation is usually a wrapper around the data

structures used internally, e.g. the ones provided by the C++ standard library or

other data structures provided by other libraries.

The common interface of a Data structure is the Data class, from which all other

types need to extend. Module implementations may use the data structures that

are provided by the implementation or use their own data types by extending from

the Data class.

The framework comes with implementations of basic data types like String, Inte-

ger, Boolean. These wrap the data types provided by the C++ language and standard

library. It also comes with an Image type based on the OpenCV [Bradski 2000] Ma-

trix data type, which is a �exible representation of an image. Additionally two

collection types, List and Map are provided. List is based on the standard library

vector data structure and is a simple collection of other data types. Map is based

on the standard library map and provides a way to store data by indexing each item

with a string key. A UML class diagram of the implemented data types is shown in

Figure 4.2.

A data type may implement additional functionality to provide serialisation and

visualisation. Serialisation can be used to pause a processing chain and store the

data on disk to be able to close the program and reopen it to resume processing later.

Serialisation can also be used to cache intermediate results to avoid re-computation

of the same thing over and over again when testing changes on another module. The

implementation of serialisation is optional, so if not implemented on a data type,

the related functionality will not be available.



38 Chapter 4. Design and Implementation of the Framework

load

module: load_image

params:

�lename: image.png

resize

module: resize_image

params:

width: 1200px

height: 900px

store

module: store_image

params:

�lename: resized.png

Figure 4.3: An example processing chain showing the implementation of the process

of resizing an image. The processing involves three steps: (1) load, which reads the

image from a �le, (2) resize, which performs the desired operation based on given

parameters, and (3) store, which writes the result back into a �le.

For inspecting intermediate processing data and also for visualising processing

results, data types can implement visualisation functions that can use an API pro-

vided by the framework to show windows with images, graphs, or store annotated

images. This feature is described in more detail in Section 4.3.2.3.

4.1.3 Processing Chain

In order to execute one or more modules, the framework provides a data structure

called the processing chain which consists of processing steps. A processing step is

identi�ed by its name, which is unique inside of a processing chain.

Each processing step refers to exactly one module which de�nes the algorithm

used in this step. It also de�nes the parameters used for executing the module. For

example, a processing step named to-grey-scale could refer to a convert-image

module with a parameter channels=greyscale.

The inputs of the processing step's module are de�ned via dependencies to other

steps' outputs. So the data that is provided as the output of a previous step is used

as the input of the current step. By de�ning these dependencies, a processing chain

is formed as a dependency graph between processing steps. This graph also de�nes

the order in which the modules have to be executed when running the processing

chain. A simple processing chain example is shown in Figure 4.3 showing three

modules, load, resize and store, to implement the process of resizing an image.

It reads the image from a �le, performs the resize operation and stores the result

back into another �le. The dependencies of the resize step on the load step de�ne

the input of resize to be populated with the result of load. The same applies to

store, which takes the image from the resize step.

A module can have multiple inputs as well as multiple outputs, which are iden-

ti�ed by a name. These are de�ned by the module implementation. For example a

processing module which performs an averaging operation on an image could have

two inputs: (1) the image, and (2) a kernel, which de�nes the averaging window.

To apply Gaussian blur on the image, a processing chain that provides a Gaussian

kernel can be created to provide the second input. See Figure 4.4 for an example.
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load

module: load_image

params:

�lename: image.png

gauss_blurr

module: image_avg

store

module: store_image

params:

�lename: gauss.png

kernel

module: gauss_kernel

params:

sigma: 20

image

kernel

Figure 4.4: An example of a processing chain with non-linear �ow. The image_avg

module has two inputs. One is the image and the other is the kernel to apply for

averaging. The processing chain de�nes which outputs of other modules should be

passed to these inputs when the processing chain is executed. The data is retrieved

after the processing steps load and generate_kernel have been executed. This

example also shows how a generic reusable module implementation, like image av-

eraging, is used to generate a concrete application using Gauss. The same module

can be used in various di�erent applications when other kernels are applied.

4.1.4 Summary

Figure 4.5 shows an UML class diagram visualising the relations between the entities

of the data model. This model provides several bene�ts. It allows separation of the

modules code via a well de�ned interface, which allows reusing the implemented

algorithm in di�erent scenarios without the need to adjust the code. It also allows a

�exible processing execution which is controlled by the framework dependent on how

modules are connected instead of hardcoded in a program. This way parallelism,

when possible, can be exploited automatically by the framework, without the need

for implementing parallelism in the algorithm itself.

4.2 Execution of a Processing Chain

A typical processing chain consists of steps that use modules from di�erent sources.

Some modules are provided by the framework, which are simple things like loading

and storing �les as well as basic image operations, or the SfM modules described

in Chapter 5. Dependent on the use case the other modules are either written by

the user or taken from third parties which provide certain functionality that is to

be used in the processing.

A common approach for including external algorithms, which is also used for

most of the SfM implementations in Chapter 5, is the wrapping of an executable
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Figure 4.5: UML class diagram of the entities in a processing chain de�nition.

The processing chain consists of processing steps. Each processing step references

a module which de�nes the algorithm to execute. To determine the input of the

module, the processing step has input sources which reference other processing steps

to read their outputs. Additionally a processing step is assigned parameters which

are passed to the module upon execution.

or script, by preparing the script input in an expected format or �le, running the

external program, and reading the processing result, converting it to data types used

in the framework.

When developing new methods, the implementation would normally be written

in C++ and is provided directly by the module or a separate library linked to it.

Bindings to other programming languages or tools like Python or MatLab could

also be implemented, but are not part of the current implementation. For using

algorithms from other languages than C++, an approach like described before, by

running an external program, can be used.

4.2.1 Module Runner

As already mentioned, a bene�t of the processing chain description is that it only

de�nes dependencies between the steps in a descriptive way. It does not contain any

speci�cs about the execution of modules, so the framework can determine an execu-

tion process that is most e�cient by exploiting parallelization to run independent

steps. Separation of steps could also be used to implement methods, which allow

distributing computation on di�erent computers. The framework would then send

the serialised input data to the execution server, run the module there and transfer

the result data back, after execution has �nished. The data type must implement

the serialisation functions for this to work. This feature is not implemented yet.
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The Module Runner provides the core functionality for running a processing

chain. For running the processing chain, the steps are �rst ordered by their depen-

dencies to ensure, that input data is available from modules, that have produced

this data before. Circular dependencies are not possible and will result in an error.

A processing chain is also validated for matching input and output data types. A

type-checking mechanism is applied to the processing chain before running to ensure

the data passed from one module to another matches the expected type. This is

done before execution of the processing chain by using meta data provided by the

module, which for each input and output declares the data type it expects. Only

when the data types match for all declared dependencies, the processing chain is

executed. This way the module implementations can safely use type casting on the

input data because the framework ensures that the data is provided in the expected

type.

The Module Runner has two operation modes. The �rst mode is running a

processing chain as a whole from start to end. The second mode is a step-by-step

run, where the user has to start the next step manually when the current is �nished.

This allows debugging a processing chain by running a step, then inspecting the

output and run the next step afterwards. A possible extension of the framework

could also be to allow the user to modify data between steps, either to provide

user input or to correct the result of automatic processing by manual veri�cation.

Switching between both modes is also possible, which in the �rst mode will cause a

running chain to pause after the current step has �nished and in the second mode

to run further steps without stopping until the end of the processing chain has been

reached.

4.2.2 Data Manager

The data transferred between the modules is managed by an entity called Data

Manager. It consumes the output data of each module when the processing is

�nished and ensures, that the data is passed to other modules requiring it as input.

In normal operation mode the data is kept only until no other module, that is

requesting it, needs to be run. To keep memory clean this data is then dropped. It

is possible to enable a debug mode where all data is kept for the whole runtime of

the processing chain so it can be inspected later.

For handling data of large size, that should not be kept in memory, the data can

be stored on the disk and the data type will only store a reference to the data which

can be used to access it. This works when the data type implements the serialisation

methods.

For repeated runs of the processing chain the caching of speci�c data can be

enabled to skip time consuming recalculation of some data when changing function-

ality or parameters of another module for testing. The data type must implement

serialisation for this to work.
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4.2.3 Mapping on List Data Types

A special feature for list data types exists that allows running a processing module

for each item of the list. All modules that have a single input can be used in this

way. The output of the processing step that uses this feature will then contain a list

of all output elements of the module instead of one output element.

If the output of a previous processing step is a list, it can be connected with

a module that accepts a single item by specifying the input appending .map().

For example if the output of a load processing step is a list of images the input

should be speci�ed as image: load.images.map(). The framework will then run

the module for each item in the list and combine all output data into lists as well.

This is useful to write modules that can work in parallel, so the framework can use

this to distribute the work to di�erent CPU cores. It also simpli�es the algorithm

implementation as the user can focus on the algorithms implementation without the

need to care about the iteration over the list.

4.3 User Interfaces and Con�guration

The framework provides two di�erent interfaces for working with it. The Graphical

User Interface (GUI) and Command Line Interface (CLI), which both share the

core framework implementation which is contained in a shared library. The library

provides all the core functionality, which is the interface for data structures and

modules, the Module Loader, Runner, and Data Manger, as well as logging func-

tionality. The con�guration of a processing chain is stored in a �le format which is

the same for both interfaces so processing chains created with the GUI can be run

with the CLI and vice versa. The general program layout is shown in Figure 4.6.

4.3.1 The Processing Chain Con�guration File

To be able to store a created processing chain in a �le for later use a �le format

needs to be de�ned. The selection of the �le format as well as the format itself are

explained in the following sections.

4.3.1.1 Selection of the Storage Format

From a programming point of view, the easiest solution for storing a processing

chain would be to dump the binary content of the data structures form C++ into a

�le and read it back when needed. This approach however has several drawbacks.

The major problem with this is that it is not human readable so it is impossible

to manually edit the �le without the GUI, which would prevent several use cases

for using the framework in a console environment only, for example via remote

connection to a server. Binary formats are also harder to maintain when it comes

to creating di�erent versions of a processing chain. Di�erences between text �les

can be made visible using existing text di� tools. The possibility of being able to

manually edit a �le also allows the usage of comments to explain the layout of the
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GUI CLI

Framework Library

Processing Chain

YAML File

Runner

Data Manager

Logger

Module Loader

Module 1

Module n

...

Figure 4.6: Organisation of the framework components. The framework libary pro-

vides all the functionality for loading and running modules as well as data managing

and logging functionality. It also manages the access to the processing chain con-

�guration �le. Both, GUI and CLI access the framework functionality through the

same programming interface.

processing chain if necessary. A binary format is also harder to extend in case new

functionality is added to the framework. Therefor a text format should be de�ned

for storing the processing chain.

It is preferable to use an existing format instead of inventing a new one as

people may be already familiar with it, which reduces the learning curve for people

starting to use the framework. Also for existing formats, there are already existing

help resources as well as libraries dealing with it. Also other programs may be

developed more easily for working with the �les, e.g. for automatic generation of

processing chains from other contexts.

There exists a variety of �le formats, of which the following seem to be very

popular JSON, XML, YAML [Ben-Kiki 2005].

YAML when compared to alternatives like JSON or XML provides the advantage

of being easy to read. An advantage over JSON is that it is easier to write and it

allows comments. XML is very verbose and also does not provide data types other

than String. To de�ne Integer or Boolean values in XML requires the annotation of

each entry with meta data which makes simple speci�cations already quite verbose

[Ben-Kiki 2005]. Following from this the storage format of choice for the processing

chain �le is YAML.
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4.3.1.2 Structure of a Processing Chain YAML File

The base of a processing chain YAML �le is a YAML map of key-value-pairs. It

contains at least one key named chain. Further keys can store additional informa-

tion about the processing chain. This is mainly done to easily extend the format

later with additional information e.g. a description, or other options like global

parameters or a working directory. These are currently not implemented.

The value of chain is a YAML map representing the processing steps. Each key

represents the name of the processing step, while the values are again YAML maps

for the step properties. A processing step name may contain any character in an

ASCII compatible character set, except a dot and parenthesis (ASCII 40,41,46):

chain :

s tep1 : . . .

s tep2 : . . .

Properties of a processing step are module, inputs, and params. The module is a

string with the id of the module used in this step. inputs is a YAML map where the

keys reference the names of the inputs of the module of this step and the value is a

string that is interpreted to determine how to obtain the input data. The currently

supported options for determining the input data are the following:

• a string referencing another step and the output name separated by a dot

(ASCII 46), for example load.image references the image output of the load

processing step.

• as explained in Section 4.2.3, if the output of a module is a list of the data

types needed for an input of this step, the reference may be appended by

.map(), which will cause the module of this step to be applied to each element

of that list. This will make the processing step itself output a list instead of

a single data item. For example load.images.map() will apply the current

steps module on each image that is contained in the images list of the load

step.

Listing 4.1 shows a YAML con�guration of the processing chain shown in Figure 4.4,

which computes a Gaussian blur for an image.

4.3.2 Graphical User Interface

The Graphical User Interface (GUI) serves two di�erent use cases. The �rst is the

creation of a processing chain by combining modules, and the second is running a

processing chain and exploring the output data of the processing steps.

These two use cases are re�ected in the design of the user interface, which on the

left hand side provides tools for manipulating the processing chain, and on the right

hand side provides the control and data inspection tools for running and evaluating

the processing chain. In the middle of the GUI window, the dependency graph of

the currently loaded processing chain is visualised. A screenshot of the GUI layout

is shown in Figure 4.7.
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Listing 4.1 Example processing chain YAML �le, representing the processing chain

shown in Figure 4.4. It de�nes a processing chain containing 4 processing steps:

load, generate_kernel, gauss_blur, store. The load and generate_kernel steps

provide the input data for the gauss_blur step, which is de�ned via the dependen-

cies in inputs. The store step depends on gauss_blur and will store the processing

result in a �le.

chain :

load :

module : load_image

params :

f i l e : image . png

generate_kerne l :

module : gauss_kernel

params :

sigma : 10

gauss_blur :

module : image_avg

inputs :

image : load . image

ke rne l : gauss_kernel . k e rne l

s t o r e :

module : store_image

inputs :

image : gauss_blur . image

params :

f i l e : image_blur . png
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Figure 4.7: Screenshot of the GUI layout, showing the controls for manipulating

the processing chain on the left hand side, a dependency graph visualisation in the

middle, and the controls for running the processing chain and inspecting the output

data on the right hand side.
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4.3.2.1 Processing Chain Creation

The left part of the GUI for designing the processing chain is structured as follows

(cmp. Figure 4.7): It contains a list of existing processing steps that re�ects all steps

currently added and which are also shown in the graph visualisation. Below that a

selector for the module and two lists are displayed, which re�ect the parameters and

inputs of the currently selected step from the processing step list. The parameter

list is a table of parameter names and their values. A parameter description is

shown when the mouse is moved over the parameter row in the table. The input

table consists of three columns: the �rst is the name of the input of the current

step's module. After that the referenced source step can be selected. If the source

step has multiple outputs the referenced output is selected in the third column. The

selection is made via drop-down lists and also directly applies type checking by only

providing options that match the type. If an output is a list, the third dropdown

also provides the .map() option which was explained in Section 4.2.3

4.3.2.2 Processing Chain Execution

The right panel of the GUI is for controlling the execution of the processing chain

and visualisation of the output data (cmp. Figure 4.7). The upper part of the panel

contains the buttons for run control, the lower part lists the processing steps that

have already been executed together with their output data.

The control buttons provide the option to run the chain as a whole or step

through it. When the chain runs, a click on the �pause� button will pause after

the current step has �nished. Pausing will allow to inspect the intermediate output

data. Inspecting the data is also possible while the chain is running and data will

show up as soon as a module populates it. An already populated output data may

be updated by the module multiple times while running. This allows inspecting

intermediate results for modules that take a long time to run. It is possible to stop

the chain at any time, which will result in the execution to be aborted. A clear

button allows to remove all data to start the chain again.

Below the control buttons a progress bar shows the overall progress of the pro-

cessing chain. If a module does not provide any progress information, the progress

bar will only move forward after a module is �nished. In case the module provides

progress data, an additional progress bar is displayed, which shows the module's

individual progress. The overall progress is also adjusted accordingly.

p =
nf
ns

+
1

ns
· ps (4.1)

with ns being the number of all processing steps, nf the number of steps that are

already �nished, and 0 ≤ ps ≤ 1 the progress of the current module. This allows

the user to get an idea about the current status of the processing which is helpful

for complex computations to known whether progress is made and how long it may

take for it to �nish.
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4.3.2.3 Output Data Visualisation

Below the run control buttons and progress bar a list of steps that have already

�nished is shown. When a step is selected, the outputs are shown and made available

for visualisation. The visualisation system is designed to be extensible in the way

that the implementation of the visualisation is part of the data structure class,

which can use an interface provided by the GUI to open windows. A data structure

implementation provides the following methods:

• visualizations(), which returns a list of string identi�ers to show possible

visualisation options. An empty list means that the data type can not be

visualised.

• visualize(option, context) which is called by the GUI when a visualisation

is selected. The GUI passes the selected visualisation option and an object

called VisualizationContext, which provides methods for opening windows to

display images or text.

Besides the possibilities of opening windows in the GUI, a visualisation may also

just open an external program or display its own windows independently of the

GUI program. This is for example implemented for visualising 3D models and point

clouds. Modules can use a library that comes with the framework that controls the

visualisation of 3D data in Geomview. Geomview [Phillips 1993] is an Open Source

Software for displaying 3D visualisations. It allows other programs to control the

output via a control language. This allows adding 3D objects to a scene on demand

and also to replace or remove them, which provides a very �exible and powerful way

for 3D visualisation.

4.3.2.4 Visual Feedback

The overall design of the GUI builds on visual feedback for the user so it is easy to

follow the changes in the processing chain when editing or following the progress of

processing chain execution.

The processing step dependencies are visualised as a graph, which allows the

user to navigate even complex processing chains with many interdependent modules

while still keeping a good overview.

The graph also provides feedback about the current state when running the

processing chain. Processing steps that have �nished are shown in green to indicate

overall processing chain progress. In case of failure, the processing step that caused

the failure is marked red, so it is directly visible where the problem occurred and it

can be addressed by selecting the step, and checking its con�guration.

Figure 4.8 shows the status of an example processing chain, which has executed

and stopped after an error occurred in one step.
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Figure 4.8: Visual feedback in the processing chain overview. Steps that have

successfully �nished are shown green. Un�nished steps are white. A failing step

�sfm� has been marked red to indicate an error.

4.3.3 Command Line Interface

The purpose of the command line interface is mainly to run processing chains. This

is useful for running processing chains on a server which is accessed remotely through

a console connection like SSH.

It may also be used to execute single modules without implementing a processing

chain which can be used for testing a module while developing or to exploit the

functionality provided by a module in a context outside of a processing chain or the

framework itself.

The command line interface comes as a binary that can be controlled with several

options. The command uipf -c chain.yaml will read a processing chain from the

�le chain.yaml and execute it. The command line interface does not implement

visualisation options, so modules have to be con�gured to write desired data to the

disk. A command line option to specify output data, which should be visualised,

could be added to provide this functionality, but this is currently not implemented.

The command uipf <modulename> can be used to create a processing chain on

demand that runs a single module. The inputs and parameters may be speci�ed

on the command line using the -i option followed by the name of the input, a

colon (:) and a value indicating how to obtain the input. This will be passed to

the constructor of the data type implementation and in case of a �le name, the data

structure class will load this data from a �le. Similarly parameters are speci�ed

with the -p option followed by the parameter name, a colon (:) and a parameter

value.
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4.4 Extending the Framework

The framework allows adding new functionality by creating new modules and data

types. This section contains a short introduction into the creation of modules and

data types in C++. A more detailed explanation can be found in the framework

documentation, that is made available together with the code. See Appendix A for

references.

4.4.1 Implementing a Module

For the implementation of a simple module, a single C++ �le is su�cient. The

implementation is based on extending a C++ class provided by the framework, which

covers all that is needed for dynamic loading of the module, as well as communication

with the framework. This results in a module implementation to only contain code,

that is needed for the module to work.

An important part of the module implementation is the module meta data, that

de�nes the information needed for the framework to understand how the module

works. This includes a unique ID, name, description, the list of input and output

data, as well as the parameters, that are available. Name, description, and category

are used for displaying the module for selection in the GUI. The ID is used to

reference a module from a processing step. It must be unique among all modules

and should consist of multiple parts. It should begin with a vendor name followed

by a dot (.) and then some string identifying its purpose. The vendor name

should be chosen in a way that is unlikely to con�ict with others, for example

be based on the organisations name for which the module was created. Modules

provided by the framework, which are unrelated to SfM are pre�xed with uipf (for

Uni�ed Image Processing Framework), SfM modules for my thesis are pre�xed with

uipfsfm. Other modules, for example when created in the Computer Vision and

Remote Sensing department at TU-Berlin could use tuberlin-cvrs as the vendor

pre�x. The part of the name after that pre�x can be freely chosen and may use

more dots to create a hierarchy, like e.g. uipfsfm.keypoints.sift.

Module inputs and outputs have a name, a description and a type. They also

have a marker that indicates whether they are optional or not. So a module can be

implemented to be used in �exible ways, e.g. some outputs may only be calculated

if requested by other steps, or inputs and parameters may have default values if not

provided.

Module meta data is de�ned using a set of C macros. The only de�nition in C++

code is a method run() on the module class de�ned by the UIPF_MODULE_CLASS

macro. This method is invoked when running the processing chain and implements

all the module logic. An example meta data de�nition is shown in Listing 4.2.

The module communicates with the framework via methods de�ned in the par-

ent class. For retrieving input data there is getInputData(name). Input data is

requested by its name which will provide a pointer to the object holding the input

data. The implementation uses the smart pointer feature of C++11 to make sure
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Listing 4.2 Example module implementation showing the macros for module meta

data de�nition. The module implementation should be placed in the run() method.

#inc lude <u ip f /data . hpp>

#inc lude <u ip f /data/opencv . hpp>

us ing namespace u ip f ;

#de f i n e UIPF_MODULE_ID "opencv . imgproc . r e s i z e "

#de f i n e UIPF_MODULE_NAME "Res ize Image"

#de f i n e UIPF_MODULE_CATEGORY "opencv"

#de f i n e UIPF_MODULE_CLASS OpenCVResizeImage

#de f i n e UIPF_MODULE_INPUTS \

{" image " , DataDescr ipt ion ( data : : OpenCVMat : : id ( ) , \

" the input image . " ) }

#de f i n e UIPF_MODULE_OUTPUTS \

{" image " , DataDescr ipt ion ( data : : OpenCVMat : : id ( ) , \

" the r e s i z e d image . " ) }

#de f i n e UIPF_MODULE_PARAMS \

{"width " , ParamDescription ("new width . " ) } , \

{" he ight " , ParamDescription ("new he ight . " ) }

#inc lude <u ip f /Module . hpp>

void OpenCVResizeImage : : run ( ) {

// Module Implementation goes here .

}

data objects can be passed around safely and get deleted, when they are not used

anymore. A pointer for the output data is created by the module, when it is ready

and can be passed to the setOutputData(name, data) method together with the

output name. Output data may be updated, while the module is running, to allow

inspection of the data visualisation, even when the �nal output is not computed

yet. Subsequent calls to setOutputData() will update the visualisation data in the

GUI. Parameters can be read using the getParam(name, defaultValue) method,

which provides multiple ways of casting parameter values to di�erent types. It can

be used to retrieve String, Integer, Float and Boolean parameters. The conversion

is made from the value provided in the YAML �le, which is String by default. For

Boolean parameters, the values true, yes, y, t, and 1 are considered true. All other

values are converted to false.
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Listing 4.3 An example CMakeLists.txt �le for building a module with CMake.

cmake_minimum_required (VERSION 3 . 1 . 0 )

p r o j e c t (my−module )

s e t (CMAKE_CXX_STANDARD 11)

f i nd_ l i b r a ry (ModuleBase u ip f−module )

add_library (MyModule SHARED MyModule . cpp )

t a r g e t_ l i n k_ l i b r a r i e s (MyModule ${ModuleBase })

A running module may provide progress information to be displayed in the GUI.

This can be done by calling the method updateProgress(pi, pn), to indicate how

many items pi out of pn have been processed. This method will calculate the current

steps progress as ps = pi
pn

and update the GUI as described in Section 4.3.2.2.

To integrate the module with the framework, it must be compiled into a shared

library. For compiling a module on Linux the following command can be used:

g++ -std=gnu++0x -shared -o libMyModule.so MyModule.cpp \

-fPIC -luipf-module

This will compile the module implemented in MyModule.cpp into a shared library

libMyModule.so using C++11 and links this to the libuipf-module library provided

by the framework. The equivalent con�guration needed to build a module with

CMake1 is shown in Listing 4.3.

The framework will search for modules in various places, which includes the

current working directory, where the YAML con�guration �le is located, as well as

other paths which may be con�gured in a con�guration �le.

4.4.2 Implementing a Data Type

Implementing a data type is similar to implementing a module. The minimum

amount of code however is much smaller, because there is no meta data. Listing 4.4

shows a minimal implementation of a data type that wraps a list of strings in C++.

Data types are implemented in a header �le, which is included in the code �les where

the type is used. In case additional methods are implemented for the data type,

the implementation should be compiled into a shared library, to which all modules,

that are using this data type, should be linked.

The data type may implement additional functionality like serialisation and

visualisation. The implementation for these is done by extending methods of

the parent class and will be placed between the UIPF_DATA_TYPE_BEGIN and

UIPF_DATA_TYPE_END calls.

1CMake: A cross platform build software for C and C++. https://cmake.org/

https://cmake.org/
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Listing 4.4 Example data type implementation using the macro provided by the

framework.

#inc lude <s t r i ng>

#inc lude <vector>

#inc lude <u ip f /data . hpp>

UIPF_DATA_TYPE_BEGIN ( St r i ngL i s t , "tu−cvr s . S t r i n gL i s t " , \

std : : vector<std : : s t r i ng >)

// c l a s s member implementat ions w i l l be p laced here .

UIPF_DATA_TYPE_END

Serialisation is implemented by overriding the isSerializable() method to

return true and implementing a method serialize(ostream) and a constructor

that receives an input stream. The serialisation method should write the serialised

form of the data to the output stream passed to the method. The constructor should

read the serialised representation from the input stream passed to it and �ll the class

properties with the interpretation of it.

The implementation of the visualisation is already explained in Section 4.3.2.3.





Chapter 5

Implementation of SfM Data

Types and Modules

Contents

5.1 Preprocessing and Feature Extraction . . . . . . . . . . . . . 56

5.1.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.2 Module Implementation . . . . . . . . . . . . . . . . . . . . . 56

5.1.3 Visualisations . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.2 Module Implementation . . . . . . . . . . . . . . . . . . . . . 58

5.2.3 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Filtering of the Image Graph . . . . . . . . . . . . . . . . . . 59

5.3.1 Geometric Veri�cation with RANSAC . . . . . . . . . . . . . 60

5.4 Geometry Estimation and Bundle Adjustment . . . . . . . . 60

5.4.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.2 Module Implementation . . . . . . . . . . . . . . . . . . . . . 61

5.4.3 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Dense Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 62

5.5.1 Module Implementation . . . . . . . . . . . . . . . . . . . . . 62

5.5.2 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . 64

The goal of my work is not only to provide the framework, but also to have at

least one working module for each step in the SfM processing chain. This chapter

covers the implementation of data types and modules for a basic SfM processing

chain using the framework described in Chapter 4. These will be derived from

the analysis of existing processing chains in Chapter 3, speci�cally �ll the steps

visualised in Figure 3.4.

The structure of this chapter will be implementation driven and follow the cre-

ation process of the processing chain, covering the modules and data types needed

for each step. The modules implemented here are all wrappers around existing li-

braries and programs which are provided as Open Source or executable binaries by

the authors as listed in Section 3.3. For details of the implemented algorithms I will

refer to their papers.
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5.1 Preprocessing and Feature Extraction

The �rst steps in the processing chain are the pre-processing and feature extractions

steps (cmp. Sections 2.1.1 and 3.1.1.1). These steps work on images only. The input

data is a list of images, and the output is the same list of images holding meta data

and a list of key points attached to each image.

5.1.1 Data Structures

For this implementation, the �rst data structure needed is the Image that is capable

of storing a reference to the image's data �le, which is located in a working directory

of the processing chain and can be used to load the image for processing it. It should

not hold the raw image data in memory all the time, because it will take a huge

amount of memory, which is not acceptable if the processing chain should work on a

large set of images. Additionally it should also store meta data, which was read from

the EXIF [CIPA 2012] data contained in the image �le, if available. Additional meta

data are the image dimensions and, if available in the EXIF data, the focal length

f . The focal length should be stored as it can later be used as prior information on

the geometry estimation algorithm.

For the key point detection step the Image data structure must be able to store

the key points as a list of key point items. For the implementation I use the char-

acteristics of a Keypoint, as it is implemented in the OpenCV image processing

library [Bradski 2000], which has the following properties: (1) the pixel coordinates

of the key point (kx, ky), (2) the scale ks, and (3) the orientation angle kα.

Each key point also stores a descriptor vector, which in case of SIFT has a

dimension of 128 [Lowe 2004], but may have other dimension for di�erent key point

detectors.

5.1.2 Module Implementation

The implementation of this step includes two modules, the Load Images module

and the SIFT module.

The Load Images module loads image �les from a directory on the �le system,

and provides one output, which is a list of Images including their EXIF meta data.

The SIFT module implements key point detection and description by wrapping the

SIFT binary provided by David Lowe [Lowe 2004] on his website1. The module

takes an image as input and returns that image unchanged, but adds the key point

list data structure to it.

The processing chain of this step makes use of the map()-feature, described in

Section 4.2.3, as the key point detection will be applied to each item of the list,

which is returned by the Load Images module. The result will be a list of images

with attached key points.

1SIFT Website: http://www.cs.ubc.ca/~lowe/keypoints/

http://www.cs.ubc.ca/~lowe/keypoints/
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Figure 5.1: Visualisation of detected key points in an image. It shows the position

of the key points and indicates the scale and orientation by drawing a circle.

5.1.3 Visualisations

This step includes two types of data, which can be visualised, the image and the

key points. A trivial visualisation is to show the loaded image for inspection. The

framework is able to show the list of images loaded and to display each image in a

window for the user to inspect the set of images, that will be used in later processing.

For each image, also the loaded EXIF meta data can be listed as a text view.

Another visualisation is the visualisation of key points. This includes the key

points' positions, as well as their scale and orientation. This way a manual validation

of the processing result is possible after key points have been detected. An example

visualisation is shown in Figure 5.1. Each key point is visualised as a circle around

its position. The scale determines the radius of the circle and to indicate the angle,

a line starting in the centre of the circle is drawn towards the outer line.

5.2 Feature Matching

This part of the processing chain implements a key point matching module based

on the matcher program, which is part of the Bundler SfM program [Snavely 2006],

which has been described in Section 3.3. The module �nds matching point pairs in

images to create an image graph from them.

5.2.1 Data Structures

This step introduces the ImageGraph and ImagePair data structures. The

ImageGraph consists of two lists. The �rst is a list of all images contained in the

graph to allow iteration over the single images in later steps, the second is a list

of ImagePairs, that de�ne the edges of the graph between connected images. The
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Figure 5.2: Visualisation of an image graph. Nodes are the images and connection

lines indicate images that show the same part of the scene.

ImagePairs are created from the information given by the matcher program, which

returns a list of images that are related, as well as the indexes of the matching

point pairs. So each image pair has to store the indexes of the corresponding point

pairs. In image pair may optionally also contain the Fundamental Matrix F, if it is

calculated for veri�cation of the matches.

5.2.2 Module Implementation

The module implementation is a wrapper around the external program provided by

Bundler [Snavely 2006]. It prepares the input key point lists for each image in the �le

format expected by Bundler and reads back the matching �le, that is generated by it.

The matcher program uses an approximate nearest neighbour search for matching

the images and also includes a RANSAC approach for estimating the Fundamental

Matrix (cmp. Section 2.1.3.5). This however is not returned by the program and

can not be added to the ImagePair data structure.

5.2.3 Visualisation

A new data type also comes with adding new options for visualisation. The image

graph can be visualised as a whole by drawing a graph showing which images are

related. The nodes of the graph are created by showing the �le name of the original

image and draw connections for each image pair. The drawing of the graph is created

using GraphViz [Gansner 2000]. An example is shown in Figure 5.2.

The inspection tool in the GUI can also show the list of image pairs. For each

image pair a visualisation of their matching key points can be shown, as can be seen

in Figure 5.3. Therefor the two images are displayed side-by-side and connection

lines are drawn between matching key points' pixel positions. This allows the user

to visually verify the behaviour of the matching algorithm.
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Figure 5.3: Visualisation of the matching of key points.

Figure 5.4: Wrong key point matching on the time stamp.

5.3 Filtering of the Image Graph

The example data set I used when implementing the modules in this chapter contains

time stamps on each image, which have been added by the camera when the photos

have been taken. I have not shown these in the previous �gures to avoid distraction,

however they cause problems with improper key point matching, as can be seen in

Figure 5.4. To avoid this, I have implemented a simple �lter module that �lters

these wrong matches from the image graph.

Regular key point matches will usually never have the same pixel coordinates in

both images, because they picture the scene from another perspective. The �lter

module will remove matches with coordinates (m1x,m1y) in one image, where the

coordinates in the second image (m2x,m2y) are within a window w:

(m1x − w ≤ m2x ≤ m1x + w , m1y − w ≤ m2y ≤ m1y + w) (5.1)

Another option of the �lter module is to �lter out image pairs, that do not seem

to have good matches. This allows setting a threshold for a minimum number of

matches per image pair. All image pairs with fewer matches will be removed from

the image graph.

This module is not an ideal solution, as the outliers should have been removed

inside of the matching process to not in�uence the veri�cation and RANSAC calcu-

lation used in the matching process. However as the module calls an external binary,

there is no way to inject that functionality. It still removes the wrong matches suf-

�ciently so they are not used when estimating the Fundamental Matrix in the next

step and allows the creation of useful results. Without this module, the geometry

estimation step failed on the dataset I tested.
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Figure 5.5: Visualisation of the epipolar geometry of an image pair. The image

shows corresponding point pairs as well as their epipolar lines. Each point-line

pair has a randomly assigned colour to be able to visually distinguish them. The

intersection of the epipolar lines indicates the position of the epipole.

5.3.1 Geometric Veri�cation with RANSAC

After the matching process it is desirable to further verify the matching and re-

move outliers. Therefor a module is implemented, which does geometric veri�ca-

tion using RANSAC (cmp. Section 2.1.3.5). The computation of the Fundamental

Matrix using RANSAC is implemented using the methods provided by OpenCV

[Bradski 2000].

With this module we have an estimation of the Fundamental Matrix, which is

added to the images and introduces the possibility of another visualisation method.

We can visualise the Epipolar Geometry for each image pair by drawing the epipolar

lines in an image. This is useful to visually verify the estimated Epipolar Geometry.

The visualisation is generated by selecting corresponding points pairs from the

list of matches up to a threshold. The threshold is needed to make the visualisation

useful in cases, where thousands of matching key points were found. For each point

in one image the epipolar line can be calculated using the Fundamental Matrix (cmp.

Section 2.1.3.2). Doing this for each point pair results in a line through each key

point. A random colour assignment allows to easily �nd the corresponding point

and line in the second image. An example of the epipolar line visualisation is shown

in Figure 5.5.

5.4 Geometry Estimation and Bundle Adjustment

This step provides the core of the SfM processing chain, which is the estimation

of the Epipolar Geometry (cmp. Section 2.1.3.4) and the sparse point cloud (cmp.

Section 2.1.3.6). It includes the implementation of a module as well as some ad-

ditions to the Image data structure and an additional visualisation option. It also

introduces the PointCloud data structure and its visualisation.
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5.4.1 Data Structures

For storing the result of the geometry estimation step, the Image data structure

needs to provide storage options for its projection matrix P, as well as the external

camera parameters R and t, and internal camera parameters K, which includes the

focal length f . These are added as additional properties of the class.

The PointCloud is a list of 3D points (holding X, Y , Z coordinates). For

each point it may optionally contain colour information. The colour is also a three

dimensional vector (holding R red, G green, and B blue), which takes values of

0− 255 for each channel.

5.4.2 Module Implementation

The geometry estimation module is based on the Bundler SfM program

[Snavely 2006], which implements an incremental SfM algorithm including Bundle

Adjustment. The module is wrapping Bundler's functionality by creating the ex-

pected �les, executing the Bundler program and reading the resulting output from

�les generated by the program.

The input to the Bundler program is a list of images, as well as the list of

matching point pairs for each image pair. The output generated by the Bundler

program contains external camera parameters R and t, and the focal length f ,

from which, given the image dimensions, the calibration matrix K can be derived

as explained in Section 2.1.3.1. Given K, R and t, the projection matrix P can be

derived using Equation 2.9.

5.4.3 Visualisation

In this step additional data has been generated, which can be visualised. This is

(1) the estimated camera positions in 3D space, and (2) the sparse point cloud of

the scene.

The camera positions for each image are described by the external parameters

R and t. The position of the camera centre is de�ned as C = −R−1t . The viewing
direction of the camera, assuming that an unrotated camera will look along the

negative z-axis is de�ned as:

d = R−1

(
0

0

−1

)
(5.2)

Using d, we can visualise the �eld of view of the camera by deriving a set of four

spanning vectors that span up the �eld of view starting in the camera centre.

v1,2,3,4 = f · d

‖d‖
± ow

2
· nx
‖nx‖︸ ︷︷ ︸

span in x

± oh
2
· ny
‖ny‖︸ ︷︷ ︸

span in y

with nx = d×

(
0

1

0

)
, ny = nx×d (5.3)

In Equation 5.3, ow and oh are the width and height of the CCD chip of the camera,

f is the camera's focal length. Using these vectors, a pyramid can be drawn, which
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Figure 5.6: Visualisation of camera positions relative to the reconstructed point

cloud of a building front.

has the height of the focal length of the camera and spans the �eld of view of the

camera so the viewing direction of the camera is equal to the horizontal line going

from the top of the pyramid through the bottom plane. An example visualisation

is shown in Figure 5.6.

The visualisation of the point cloud is explained in Section 5.5.2 below.

5.5 Dense Reconstruction

The dense reconstruction part adds a module to the processing chain. The input is a

set of images, for which the projection matrix P has been estimated, and the output

is a dense point cloud. From the data structure point of view there is not much

di�erence to the sparse point cloud, except that the dense reconstruction provides

normal information for the points in the point cloud, so the data structure and

visualisation has to be adjusted to support this.

5.5.1 Module Implementation

The module implementation is a wrapper around the PMVS2 program created by

Yasutaka Furukawa and Jean Ponce [Furukawa 2010b]. This has been explained

in Section 3.3. The module works in a temporary working directory where the

expected directory structure is created. The inputs to the PMVS program are the

set of images, the projection matrix P for each of them, and a con�guration �le.

These can be generated from the ImageGraph data structure by copying the images

into a directory called visualize under the working directory following the naming
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Figure 5.7: Visualisation of a point cloud as squares.

schema expected by the program. For each image, the projection matrix is stored

in a text �le in a format described in the PMVS documentation.

A con�guration �le is created, which indicates which images should be used

for reconstruction. Additionally all parameters of the PMVS con�guration �le are

created as module parameters, so that they can be controlled from the frameworks

processing chain con�guration.

The output of the program is a �le in PLY-format [Bourke 2009, Turk 1998],

which contains the dense point cloud, which for each point stores the normal esti-

mation as well as a colour. The PLY �le format is described in Appendix B.

5.5.2 Visualisation

The visualisation of the point cloud is not trivial, because a point has the size of

zero. To make the points visible an object has to be created that describes the

position of the point. In case colour information is available, this object should also

be coloured to make it easier to recognise the original scene when observing the

point cloud.

I have implemented the visualisation of points by converting the point cloud into

a polygon mesh, that contains small squares around each point's position. The four

corners of the square are calculated by adding vectors to the point position, which

are derived from the point normal if available. If no point normal is available the

normal direction is assumed to be along the z-axis. Figure 5.7 shows a point cloud

visualisation of a part of a building front.
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5.6 Surface Reconstruction

Surface reconstruction is the next step after dense reconstruction to create a surface

mesh. A surface reconstruction module has been implemented similar to most of

the modules before. It wraps the PoissonRecon software which implements the

algorithm by [Kazhdan 2013]. It is also part of the software list in Section 3.3.

The input data of the module is a point cloud, which is serialised and stored

in a �le using the PLY �le format (Appendix B). This �le is then given to the

PoissonRecon program to perform the surface reconstruction.

The algorithm works on points clouds that contain normal information. The

point normal is a vector indicating the orientation of the surface the point is located

on in the real scene. The vector stands orthogonal to the surface and can be used

for reconstruction of the surface.

PoisonRecon can also use colour information to add a colour for each triangle

on the mesh. This allows visualising the object in a similar way that would be

possible with real texture. A real mesh texturing algorithm however has not been

implemented.

The output of the Surface Reconstruction is a triangle mesh which is also stored

in the PLY �le format, which can be used for further processing or to view the mesh

in a mesh viewing program.
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In this chapter I will apply the framework to example use cases to show how it

works and validate the functionality.

This is done by an experiment to show that all implemented modules work

together in order to create a 3D reconstruction of a scene. The task is to create a

processing chain and to apply it to di�erent datasets of scenes with a single camera

and a concrete object, to see whether a 3D reconstruction can be obtained.

I will also explain how the framework helps with the task of creating a processing

chain and evaluating the results.

6.1 Datasets

The datasets used in this experiment are �Der Hass� by [Fuhrmann 2014], as well

as �fountain-P11� and �Herz-Jesu-P8� by [Strecha 2008].

The images in the �Der Hass� dataset show a statue on a stand that has been

photographed from positions on a circle around it. It is a rather simple dataset

which does not contain many challenges to be solved by an SfM algorithm and

provides good structure for point detection and matching. The dataset consists of

79 images.

The �fountain-P11� dataset contains 11 images showing a fountain in front of

a stone wall. This dataset also contains a lot of structure which is good for point

matching.

The �Herz-Jesu-P8� dataset are photographs of a building front which consists of

8 images. This dataset is a bit more complicated, as it contains repetitive structure

which could cause false matches.

6.2 Work�ow

For creating the processing chain by putting together existing modules and devel-

oping new modules, a small subset of a dataset is used. Images are also resized to
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Figure 6.1: Visualisation of the sparse reconstruction of the �Der Hass� dataset

by [Fuhrmann 2014]. It shows the sparse point cloud as well as estimated camera

positions, which can be selected for display separately.

reduce the computational load and thus the waiting time for results, when changes

are made.

Resizing of the image is done by implementing a resize module that takes an

image as input and outputs a resized version of it. The module can be controlled by

parameters which either de�ne a �xed target size or a maximum width or height.

Dependent on the speci�ed parameters the desired action is performed on the images.

If only one dimension is given, e.g. width, the height is computed by keeping the

aspect ratio of the image.

The processing chain for this preprocessing step is: Load Images → Copy Im-

ages→ Resize→ Store Images. The Copy Images step is necessary, to not overwrite

the original �les. The resize module is now part of the framework so it can be

reused in later applications.

Using the generated data set with small images, the modules are added to the

processing chain and tested whether they work as expected. If something does not

work, the visualisation methods help to �nd the issue. For example a bug in the

serialisation method of the key points has been spotted which stored the coordinates

in the wrong order (x and y swapped). The only indicator of the problem was a

not working reconstruction step, so debugging this would have been much harder

without visual veri�cation options.

After the processing chain has been created it can be taken to a di�erent com-

puter or a server to execute it on di�erent datasets. The processing chain �le makes

it easy to duplicate the same process by storing all information and parameters in

one place. This is useful for repeatability of results.

The YAML format also allows copying the processing chain to di�erent directo-

ries to run experiments with di�erent set of parameters. In each directory the same
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Figure 6.2: From left to right: Sparse point cloud, dense point cloud, surface recon-

struction of the �fountain-P11� dataset by [Strecha 2008].

results structure will be generated after all processing chains have been executed.

When running the processing chain on a server using the command line interface,

all desired output data should be stored using modules, that are able to store them.

For point cloud and image graph these modules have been implemented, which are

able to store a point cloud as a �le in PLY format and an image graph in NVM

format, that contains all images as well as matching key points and sparse point

cloud. When results are obtained from the server, data reading modules can be

used to load the data for visualisation in the GUI.

6.3 The Processing Chain

The processing chain developed for this case uses the modules that have been im-

plemented in Chapter 5. Key point detection uses the SIFT module, which wraps

the SIFT binary by [Lowe 2004]. For feature matching and SfM, the Bundler pro-

grams are used [Snavely 2006]. The module for dense reconstruction is PMVS2

[Furukawa 2010b]. From the dense point cloud a surface mesh is created using the

Poisson reconstruction module which implements the methods by [Kazhdan 2013].

The steps of the processing chain are Load Images → SIFT → Bundler

Matcher → Bundler SfM → PMVS → Surface Reconstruction. Additional pro-

cessing steps are added, that store the sparse dense point clouds and also the image

graph.
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Figure 6.3: Surface mesh of the �Der Hass� dataset.

6.4 Results

The processing chain is executed on the dataset to produce a sparse reconstruction.

Using the visualisation methods provided by the framework the result can be in-

spected in a 3D view. It is possible to display the resulting point cloud as well as

the estimated camera positions. The display of these can be selected separately. It

is also possible to select only speci�c cameras to be displayed by choosing the single

camera visualisation for an image. An example is shown in Figure 6.1.

The visualisation showed, that for the �fountain-P11� dataset Bundler was not

able to produce a reconstruction without prior information. The Load Image module

allows to specify a focal length as image meta data. By setting the focal length to

a certain value, that approximates the real value, the reconstruction succeeds as

can be seen in Figure 6.3. The width of the image seems to be a good indicator.

On the �Der Hass� dataset the reconstruction was possible without specifying prior

information, because this was given in the image EXIF meta data and had been

extracted automatically. The reconstruction of the �Herz-Jesu-P8� dataset can be

seen in Figure 6.4.



6.4. Results 69

Figure 6.4: Dense reconstruction point cloud of the �Herz-Jesu-P8� dataset.





Chapter 7

Conclusion

The goal of my thesis was the development of a modular framework for image-

based 3D reconstruction. I have described the theory behind the process of 3D

reconstruction in Chapter 2 and reviewed existing algorithm implementations as

well as practical applications in related work in Chapter 3 to get an understanding

of how 3D reconstruction works in theory and is implemented in practise.

Based on this, in Section 3.2, the requirements of a framework have been de-

veloped, which resulted in the description of a generic 3D reconstruction processing

chain, that shows a list of possible processing steps and data structures which need

to be supported by a framework to ful�l the desired task.

In Chapter 4 a generic framework for the creation of modular processing chains

has been developed, which was �lled with the basic functionality for 3D reconstruc-

tion in Chapter 5.

To evaluate and validate the functionality of the framework it has been used to

carry out reconstructions on di�erent datasets, which are described in Chapter 6.

I have also shown that the framework is extensible, as it allows adding custom

implementations of algorithms in di�erent parts of the processing chain. One ex-

ample is the implementation of a custom �lter that has been created for a problem

that is speci�c to a certain dataset in Section 5.3. It is further possible to implement

own data structures for processing that goes beyond what has been discussed in my

thesis.

Compared to implementing an algorithm in a custom program the overhead of

the framework is minimal. The implementation of a module inside of the run()

method is very similar to writing a C program's main() function, but comes with

automatic parameter handling, as well as visualisation methods, which otherwise

would need to be implemented manually.

The framework has been published as Free Software to allow widespread use and

extension. See Appendix A for references.

7.1 Limitations and Future Work

While the current implementation is able to solve the initially stated problem, there

are still parts that can be improved to support more use cases and improve the

performance. Besides small improvements that can be made to enhance the overall

user experience, I want to highlight a few major points that could be improved in

future work.
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The current model of a processing chain does not allow recursion, which pro-

hibits the exploitation of the incremental reconstruction approach as described by

[Wu 2013] and [Schönberger 2016a] on framework level. It is currently not possi-

ble to de�ne a processing chain that implements the methods described in these

papers from modules that implement Geometry Estimation, Bundle Adjustment

or a Next Best View selection. With the current framework design these must be

implemented in a single processing step if an incremental approach is desired, or a

processing chain has to be executed multiple times by adding more and more images

in each execution round. This can be improved by allowing recursive structures in

the processing chain, which can be de�ned in a similar manner as the mapping on

list data types, that is described in Section 4.2.3.

The model of the processing chain is designed in the way, that modules are self-

contained units, which can be executed independently of each other as long as no

dependency is de�ned via input and output data. This allows the framework to

distribute the work among multiple CPU cores. In future work the framework could

be extended to expand this concept from a single PC to a cluster of worker servers

to allow the execution of the processing chain on large reconstruction problems.

Another improvement can be made in the way modules are implemented. The

current implementation is limited to C++ as the programming language. There are a

lot of algorithms written in other programming languages such as Python or Matlab,

so the development of module bindings for these languages would add value to the

framework.

The current framework implementation is focused on algorithms that work fully

automatic. The visualisation system is currently designed to only show data pro-

duced by the algorithms. To allow the implementation of algorithms that need some

kind of user input, the visualisation system could be extended to allow the user to

input data or correct visualised results, e.g. remove wrong image matches that are

spotted by manual veri�cation.

Finally, the core execution framework described in Chapter 4 is not bound to

the use case of 3D reconstruction and provides a very �exible model for processing

chain creation, so it would be possible to broaden the application �eld to other

applications in image processing, image analysis, or even �elds outside of this scope.

I hope that the fact that the code is released as Free Software will encourage others

to use it and adopt it to other �elds.
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Appendix A

Open Source

The code created during my thesis is released as Free Software under the GNU Gen-

eral Public License under the name Uni�ed Image Processing Framework (UIPF).

The code is available on the Github code hosting platform under the following URL:

https://github.com/uipf/uipf

The following is a reference of the implemented Structure from Motion modules,

including a short description as well as web links for obtaining the code.

SfM data types https://github.com/uipf/uipf-sfm

and basic modules

SIFT module https://github.com/uipf/uipf-sfm-sift

Bundler module https://github.com/uipf/uipf-sfm-bundler

PMVS module https://github.com/uipf/uipf-sfm-pmvs

Poisson reconstruction https://github.com/uipf/uipf-sfm-poissonrecon

module

https://github.com/uipf/uipf
https://github.com/uipf/uipf-sfm
https://github.com/uipf/uipf-sfm-sift
https://github.com/uipf/uipf-sfm-bundler
https://github.com/uipf/uipf-sfm-pmvs
https://github.com/uipf/uipf-sfm-poissonrecon
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The PLY File Format

The PLY - polygon �le format [Bourke 2009, Turk 1998] is a generic �le format for

storing 3D data structures. It can store points and triangular meshes with additional

information like colour or normal vectors. Its overall design is the be very �exible in

the type of data that can be stored. The following description is a short summary.

For a detailed speci�cation see [Bourke 2009].

A PLY �le always starts with three characters ply followed by a header that

contains meta information about the data stored in the �le. The header consists of

lines that introduce this information. A line may start with the following identi�ers:

• format: A PLY �le may be stored in plain text or binary format. This �eld

indicates the �le type as well as the format version.

• comment: A comment can contain a general description of the �le and is not

meant to be read by a machine.

• element: Starts the description of an element, which can be vertex or face.

A face can be for example a triangle in a triangle mesh. It also indicates the

number of items that are stored.

• property: An element line is followed by several property lines to de�ne

properties of the element, which are identi�ed by a type and a name. For

example property float x describes the x coordinate of a point. Properties

describe how the data is structured that is following the header.

The following is an example PLY �le which stores a triangle mesh with 959695

vertices and 1919126 faces. The vertices have x, y, and z coordinates as well as

colour information. The faces are stored as references to the vertices.

p ly

format b inary_l i t t l e_end ian 1 .0

element ver tex 959695

property f l o a t x

property f l o a t y

property f l o a t z

property uchar red

property uchar green

property uchar blue

element f a c e 1919126

property l i s t uchar i n t ve r t ex_ind i ce s



78 Appendix B. The PLY File Format

end_header

. . .



Appendix C

DVD with Code, Data, and

Results

The attached DVD contains the framework code as well as data used in the experi-

ments, the processing chain con�guration �les and exemplary results.

The following things are included:

• A PDF version of the thesis

• Source code of the framework and the modules

• Usage documentation of the framework and installation instructions

• Binary packages for Debian and Ubuntu

• Datasets and processing chains from the experiments including results
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A Modular Framework for Image-based 3D Reconstruction

Abstract: In this thesis I analyse the state of the art of Structure from Motion

and 3D reconstruction algorithms to develop a framework, that improves the process

of working with these algorithms. This framework allows reusing existing parts of

a processing chain, as well as developing new algorithms e�ciently. This is done

by providing a data model and interfaces, which allow inspection of intermediate

results, as well as reorganisation of the processing �ow.

I �rst cover the basic principles of 3D reconstruction, and then review existing

implementations. Based on that the framework is developed to allow the implemen-

tation of modular and �exible 3D reconstruction processing chains.

I also show how this framework can be applied to existing problems to quickly

come to a working implementation, as it allows the user to focus on the algorithm

implementation details instead of the need to deal with the overall processing chain

design.

The implementation of the framework is released as Open Source software.

Keywords: 3D Reconstruction, Structure from Motion, Processing Frame-

work, Data Visualisation, Digital Image Processing



Ein modulares Framework für bildbasierte 3D-Rekonstruktion

Zusammenfassung: In dieser Arbeit befasse ich mich mit dem Thema der 3D-

Rekonstruktion und Struktur aus Bewegung. Im ersten Teil der Arbeit analysiere ich

die aktuellen 3D-Rekonstruktionsalgorithmen aus der Literatur, um ein Framework

zu entwickeln, welches die Arbeit mit solchen Algorithmen vereinfacht. Das Frame-

work ermöglicht existierende Implementierungen wiederzuverwenden und auch Teile

bestehender Algorithmen durch eigene Implementierungen zu ersetzen. Das Daten-

modell ist darauf ausgelegt Zwischenergebnisse zu visualisieren, und den Daten�uss

�exibel zu variieren, was die Arbeit bei der Entwicklung von Algorithmen erleichtert.

Basierend auf den Grundlagen der 3D-Rekonstruktion und Evaluierung beste-

hender Implementierungen, wird das Framework mit dem Ziel einer modularen und

�exiblen Gestaltung der Prozesskette entwickelt.

Ich zeige auÿerdem, wie das Framework auf bestehende Problemstellungen

angewendet werden kann und wie es die schnelle Lösungsentwicklung unterstützt.

Dieses erfolgt, indem das Framework dem Anwender erlaubt, sich auf die Implemen-

tierungsdetails des Algorithmus zu konzentrieren, anstatt den gesamten Prozess-

ablauf betrachten zu müssen.

Die Implementierung des Framework ist als Open-Source-Software verö�entlicht.

Schlüsselwörter: 3D-Rekonstruktion, Struktur aus Bewegung, Prozess

Framework, Daten Visualisierung, Digitale Bildverarbeitung
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